Journal of Cluster Science

, Volume 28, Issue 4, pp 2309–2322 | Cite as

Study on Structure and Property of Lutetium Introduced Silicon Clusters LuSi n (n = 3–10) and Their Anions with Density Functional Theory

Original Paper

Abstract

The geometries, electronic structures and properties including simulated photoelectron spectra (PES), adiabatic electron affinities (AEAs), and relative stability of LuSi n (n = 3–10) and their anions were investigated adopting the ABCluster global search technique combined with density functional methods. The results revealed that the most stable structures of neutral belong to “substitutional structure”, but not for their anions. The additional electron effects on the most stable structure are intense. The TPSSh AEAs of LuSi n (n = 6–9) agree excellently with the experimental data. The mean absolute error and the largest error are only 0.03 eV and 0.05 eV, respectively. The agreement between the experimental and theoretical PES indicates that the most stable structures of LuSi n (n = 6–10) are trustworthy. The DEs and charge transfer are calculated to explain the relative stabilities. HOMO–LUMO gaps reveal that introducing Lu atom to Si n (n = 3–10) raises the photochemical sensitivity.

Keywords

LuSin The most stable structure Electron affinity Relative stability HOMO–LUMO gap 

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant No. 21263010), by Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Gran No. NMGIRT-A1603), by the Inner Mongolia Natural Science Foundation (Grant No. 2015MS0216), and by the Science and Research Foundation of Higher Education of Inner Mongolia (Grant No. NJZY16419).

Supplementary material

10876_2017_1225_MOESM1_ESM.docx (8.1 mb)
Supplementary material 1 (DOCX 8317 kb)

References

  1. 1.
    C. G. Li, L. J. Pan, P. Shao, L. P. Ding, H. T. Feng, D. B. Luo, and B. Liu (2015). Theor. Chem. Acc. 134, 34-1–34-11.Google Scholar
  2. 2.
    R. N. Zhao and J. G. Han (2014). RSC Adv. 4, 64410–64418.CrossRefGoogle Scholar
  3. 3.
    G. F. Zhao, J. M. Sun, Y. Z. Gu, and Y. X. Wang (2009). J. Chem. Phys. 131, 114312-1–114312-7.Google Scholar
  4. 4.
    Q. Peng and J. Shen (2008). J. Chem. Phys. 128, 084711-1–084711-11.CrossRefGoogle Scholar
  5. 5.
    L. Y. Hou, J. C. Yang, and Y. M. Liu (2016). J. Mol. Model. 22, 193-1–193-10.CrossRefGoogle Scholar
  6. 6.
    M. Ohara, K. Miyajima, A. Pramann, A. Nakajima, and K. Kaya (2002). J. Phys. Chem. A 106, 3702–3705.CrossRefGoogle Scholar
  7. 7.
    A. Grubisic, Y. J. Ko, H. P. Wang, and K. H. Bowen (2009). J. Am. Chem. Soc. 131, 10783–10790.CrossRefGoogle Scholar
  8. 8.
    A. Grubisic, H. P. Wang, Y. J. Ko, and K. H. Bowen (2008). J. Chem. Phys. 129, 054302-1–054302-5.CrossRefGoogle Scholar
  9. 9.
    K. Koyasu, J. Atobe, S. Furuse, and A. Nakajima (2008). J. Chem. Phys. 129, 214301-1–214301-7.CrossRefGoogle Scholar
  10. 10.
    K. Koyasu, J. Atobe, M. Akutsu, M. Mitsui, and A. Nakajima (2007). J. Phys. Chem. A 111, 42–49.CrossRefGoogle Scholar
  11. 11.
    A. J. Kenyon (2005). Semicond. Sci. Technol. 20, R65–R84.CrossRefGoogle Scholar
  12. 12.
    T. T. Cao, L. X. Zhao, X. J. Feng, Y. M. Lei, and Y. H. Luo (2009). J. Mol. Struct. THEOCHEM 895, 148–155.CrossRefGoogle Scholar
  13. 13.
    T. G. Liu, W. Q. Zhang, and Y. L. Li (2014). Front. Phys. 9, 210–218.CrossRefGoogle Scholar
  14. 14.
    T. G. Liu, G. F. Zhao, and Y. X. Wang (2011). Phys. Lett. A 375, 1120–1127.CrossRefGoogle Scholar
  15. 15.
    R. N. Zhao, Z. Y. Ren, P. Guo, J. T. Bai, C. H. Zhang, and J. G. Han (2006). J. Phys. Chem. A 110, 4071–4079.CrossRefGoogle Scholar
  16. 16.
    R. N. Zhao, J. G. Han, J. T. Bai, F. Y. Liu, and L. S. Sheng (2010). Chem. Phys. 372, 89–95.CrossRefGoogle Scholar
  17. 17.
    R. N. Zhao, J. G. Han, J. T. Bai, and L. S. Sheng (2010). Chem. Phys. Lett. 378, 82–87.Google Scholar
  18. 18.
    W. Xu, W. X. Ji, Y. Xiao, and S. G. Wang (2015). Comput. Theor. Chem. 1070, 1–8.CrossRefGoogle Scholar
  19. 19.
    V. Kumar, A. K. Singh, and Y. Kawazoe (2006). Phys. Rev. B 74, 125411-1–125411-5.Google Scholar
  20. 20.
    J. Wang, Y. Liu, and Y. C. Li (2010). Phys. Chem. Chem. Phys. 12, 11428–11431.CrossRefGoogle Scholar
  21. 21.
    X. H. Xie, D. S. Hao, and J. C. Yang (2015). Phys. Chem. 461, 11–19.CrossRefGoogle Scholar
  22. 22.
    X. H. Xie, D. S. Hao, Y. M. Liu, and J. C. Yang (2015). Comput. Theor. Chem. 1074, 1–8.CrossRefGoogle Scholar
  23. 23.
    J. C. Yang, J. Wang, and Y. R. Hao (2015). Theor. Chem. Acc. 134, 81.CrossRefGoogle Scholar
  24. 24.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865–3868.CrossRefGoogle Scholar
  25. 25.
    J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria (2003). Phys. Rev. Lett. 91, 146401-1–146401-4.CrossRefGoogle Scholar
  26. 26.
    V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew (2003). J. Chem. Phys. 119, 12129–12137.CrossRefGoogle Scholar
  27. 27.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648–5652.CrossRefGoogle Scholar
  28. 28.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785–789.CrossRefGoogle Scholar
  29. 29.
    J. D. Chai and M. H. Gordon (2008). Phys. Chem. Chem. Phys. 10, 6615–6620.CrossRefGoogle Scholar
  30. 30.
    D. E. Woon and T. H. Dunning Jr. (1993). J. Chem. Phys. 98, 1358–1371.CrossRefGoogle Scholar
  31. 31.
    X. Y. Cao and M. Dolg (2002). J. Mol. Struct. THEOCHEM. 581, 139–147.CrossRefGoogle Scholar
  32. 32.
    A. A. Buchachenko, G. Chalasin´ski, and M. M. Szezes´niak (2007). Struct. Chem. 18, 769–772.CrossRefGoogle Scholar
  33. 33.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, (2010).Google Scholar
  34. 34.
    J. Zhang and M. Dolg (2015). Phys. Chem. Chem. Phys. 17, 24173–24181.CrossRefGoogle Scholar
  35. 35.
    M. Dolg, H. Stoll, A. Savin, and H. Preuss (1989). Theor. Chim. Acta. 75, 173–194.CrossRefGoogle Scholar
  36. 36.
    M. Dolg (2011). J. Chem. Theory Comput. 7, 3131–3142.CrossRefGoogle Scholar
  37. 37.
    M. Douglas and N. M. Kroll (1974). Ann. Phys. (NY) 82, 89–155.CrossRefGoogle Scholar
  38. 38.
    B. A. Hess (1985). Phys. Rev. A 32, 756–763.CrossRefGoogle Scholar
  39. 39.
    B. A. Hess (1986). Phys. Rev. A 33, 3742–3748.CrossRefGoogle Scholar
  40. 40.
    G. Jansen and B. A. Phys (1989). Rev. A 39, 6016–6017.CrossRefGoogle Scholar
  41. 41.
    J. C. Yang, W. G. Xu, and W. S. Xiao (2005). J. Mol. Struct. THEOCHEM 719, 89–102.CrossRefGoogle Scholar
  42. 42.
    D. J. Tozer and N. C. Handy (1998). J. Chem. Phys. 109, 10180–10189.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Chemical EngineeringInner Mongolia University of Technology and Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry SimulationHohhotPeople’s Republic of China
  2. 2.Inner Mongolia Vocational College of Chemical EngineeringHohhotPeople’s Republic of China
  3. 3.School of Energy and Power EngineeringInner Mongolia University of TechnologyHohhotPeople’s Republic of China

Personalised recommendations