Advertisement

Journal of Cluster Science

, Volume 28, Issue 4, pp 2269–2277 | Cite as

Green Nanosynthesis and Functionalization of Gold Nanoparticles as PTP 1B Inhibitors

  • Pankaj Das
  • Bolin Chetia
  • Ramesh Prasanth
  • Jagan Madhavan
  • Ganesan Singaravelu
  • Giovanni Benelli
  • Kadarkarai Murugan
Original Paper

Abstract

Nanomedicine has emerged to become a frontier area of research. The interdisciplinary nature of nanoscale research inevitably leads to nanostructure fabrication and functionalization. Herein, we addressed on the potential of high therapeutic indexed Syzygium cumini seed to biofunctionalize gold nanoparticles. The aqueous seed extract of S. cumini acted as a reducing and capping agent in the formation of gold nanoparticles. Biofabricated gold nanoparticles was characterized using UV–vis spectrophotometry, TEM, SEM, EDAX, FTIR and XRD analysis. PTP 1B inhibitory activity of bioinspired gold nanoparticles was assessed using PTP 1B inhibition assay. Newly synthesized gold nanoparticles was found to possess high PTP 1B inhibitory potential. Furthermore, the newly synthesized nanoparticles not shown any genotoxicity during chromosomal studies indicates its high biocompatibility nature.

Keywords

Nanomedicine Syzygium cumini Gold nanoparticles PTP 1B inhibition assay Genotoxicity Chromosomal studies 

Notes

Acknowledgements

The financial support from the Department of Biotechnology (DBT), Government of India, New Delhi, (BT/508/NE/TBP/2013) to carry out this study, is gratefully acknowledged. We thank the SAIF, IIT Bombay for technical support in the characterization of nanoparticles.

References

  1. 1.
    G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. doi: 10.1007/s10876-017-11655.Google Scholar
  2. 2.
    G. Benelli and M. Govindarajan (2017). J. Clust. Sci. 28, 287–308.CrossRefGoogle Scholar
  3. 3.
    B. Urban, S. A. Urban, H. Charron, and A. Joshi (2013). Transl. Cancer. Res. 2, (4), 292–308.Google Scholar
  4. 4.
    J. L. Huang, Q. B. Li, D. H. Sun, Y. H. Lu, Y. B. Su, X. Yang, H. X. Wang, Y. P. Wang, W. Y. Shao, and N. He (2007). Nanotechnology. doi: 10.1088/0957-4484/18/10/105104.Google Scholar
  5. 5.
    G. Benelli, R. Pavela, M. Maggi, R. Petnelli, and M. Nicoletti (2017). J. Clust. Sci. 28, (1), 3–10.CrossRefGoogle Scholar
  6. 6.
    H. M. Joshi, D. R. Bhumkar, K. Joshi, V. Pokharkur, and M. Sastry (2006). Langmuir 22, (1), 300–305.CrossRefGoogle Scholar
  7. 7.
    T. Ashokkumar, D. Prabhu, R. Geetha, K. Govindaraju, R. Manikandan, C. Arulvasu, and G. Singaravelu (2014). Colloids Surf. B Biointerfaces 123, 549–556.CrossRefGoogle Scholar
  8. 8.
    R. Geetha, T. Ashokkumar, S. Tamilselvan, K. Govindaraju, A. M. Sadiq, and G. Singaravelu (2013). Cancer Nanotechnol. 4, (4), 91–98.CrossRefGoogle Scholar
  9. 9.
    S. Guo and S. E. Wang (2007). Anal. Chim. Acta 598, 181–192.CrossRefGoogle Scholar
  10. 10.
    B. Hu, P. Guo, I. Bar-Joseph, Y. Imanishi, M. J. Jarzynka, O. Bogler, T. Mikkelsen, T. Hirose, R. Nishikawa, and S. Y. Cheng (2007). Oncogene 26, (38), 5577–5586.CrossRefGoogle Scholar
  11. 11.
    L. Lessard, M. Stuible, and M. L. Tremblay (2010). Biochim. Biophys. Acta 1804, 613–619.CrossRefGoogle Scholar
  12. 12.
    T. R. Burke, B. Ye, X. Yan, S. Wang, Z. Jia, L. Chen, Z. Zhang, and D. Barford (1996). Biochemistry 35, (50), 15989–15996.CrossRefGoogle Scholar
  13. 13.
    L. Cui, M. N. Na, H. Oh, E. Y. Bae, D. G. Jeong, S. E. Ryu, S. Kim, B. Y. Kim, W. K. Oh, and J. S. Ahn (2006). Bioorg. Med. Chem. Lett. 16, (5), 1426–1429.CrossRefGoogle Scholar
  14. 14.
    P. S. Moorhead, P. C. Novell, W. J. Mellman, D. M. Battips, and D. A. Hungerford (1960). Exp. Cell. Res. 20, 613–615.CrossRefGoogle Scholar
  15. 15.
    K. Murugan, D. Nataraj, A. Jaganathan, D. Dinesh, S. Jayashanthini, C. M. Samidoss, M. Paulpandi, C. Panneerselvam, J. Subramaniam, A. T. Aziz, M. Nicoletti, S. Kumar, A. Higuchi, and G. Benelli (2017). J. Clust. Sci. 28, 393–411.CrossRefGoogle Scholar
  16. 16.
    T. O. Johnson, J. Ermolieff, and M. R. Jirousek (2002). Nat. Rev. Drug Discov. 1, 696–709.CrossRefGoogle Scholar
  17. 17.
    A. Ullrich and J. Schlessinger (1990). Cell 61, (2), 203–212.CrossRefGoogle Scholar
  18. 18.
    A. Ostman and F. D. Böhmer (2001). Trends Cell Biol. 11, 258–266.CrossRefGoogle Scholar
  19. 19.
    D. Barford, A. J. Flint, and N. K. Tonks (1994). Science 263, 1397–1404.CrossRefGoogle Scholar
  20. 20.
    V. Wagner, A. Dullaart, A. K. Bock, and A. Zweck (2006). Nat. Biotechnol. 24, 1211–1218.CrossRefGoogle Scholar
  21. 21.
    S. Sahoo, S. Parveen, and J. Panda (2007). Nanomedicine:NBM 3, 20–31.CrossRefGoogle Scholar
  22. 22.
    J. Panyam and V. Labhasetwar (2003). Adv. Drug Deliv. Rev. 55, 329–347.CrossRefGoogle Scholar
  23. 23.
    G. Han, P. Ghosh, and V. M. Rotello (2007). Nanomedicine 2, 113–123.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pankaj Das
    • 1
  • Bolin Chetia
    • 1
  • Ramesh Prasanth
    • 2
  • Jagan Madhavan
    • 3
  • Ganesan Singaravelu
    • 2
  • Giovanni Benelli
    • 4
  • Kadarkarai Murugan
    • 2
  1. 1.Department of ChemistryDibrugarh UniversityDibrugharhIndia
  2. 2.Department of ZoologyThiruvalluvar UniversityVelloreIndia
  3. 3.Department of ChemistryThiruvalluvar UniversityVelloreIndia
  4. 4.Department of AgricultureFood and Environment, University of PisaPisaItaly

Personalised recommendations