Journal of Cluster Science

, Volume 28, Issue 4, pp 2223–2238 | Cite as

Tannic Acid Stabilised Copper Nanocluster Developed Through Microwave Mediated Synthesis as a Fluorescent Probe for the Turn on Detection of Dopamine

Original Paper
  • 330 Downloads

Abstract

The authors report on the development of copper nanocluster stabilized with tannic acid (TA CuNC) as a fluorescent nanoprobe for the turn on detection of a catecholamine neurotransmitter, dopamine. The nanocluster is obtained through a microwave assisted synthesis and exhibit distinct blue emission peak at 450 nm during excitation at 370 nm. The luminescence in the present system is effectively quenched by Fe(III) ions. The quenching happens through an electron transfer mechanism, which operate between the nanocluster and Fe(III) ions. The quenching is linear proportional to the concentration of Fe(III) between 0.25 and 1 μM and the detection limit is as low as 1.28 nM. Addition of dopamine into the quenched system causes the removal Fe(III) ions from the cluster surface and thereby leads to the retrieval of luminescence. The quenched system exhibited high sensitivity and selectivity for dopamine with a limit of detection 45 nM. The adaptability of the nanocluster as a turn on fluorescent probe is tested in real samples for the detection of dopamine and the recovery of fluorescence is in the range of 95%.

Keywords

Tannic acid Copper nanocluster Ferric ions Fluorescence probe Dopamine 

Notes

Acknowledgements

The authors thank the Head, Department of Chemistry, University of Kerala (Kariavattom Campus), Thiruvananthapuram, Director, SAIF-STIC-CUSAT (Kochi), and the Director, Instrumentation Centre, M. G. University (Kottayam) the for the sophisticated characterization techniques provided for the work.

Supplementary material

10876_2017_1221_MOESM1_ESM.docx (646 kb)
Supplementary material 1 (DOCX 649 kb)

References

  1. 1.
    K. Qu, J. Wang, J. Ren, and X. Qu (2013). Eur. J. 19, 7243–7249.CrossRefGoogle Scholar
  2. 2.
    S. R. Ankireddy and J. Kim (2015). Int. J. Nanomed. 10, 113–119.Google Scholar
  3. 3.
    J. Zhao, L. Zhao, C. Lan, and S. Zhao (2016). Sens. Actuators B Chem. 223, 246–251.CrossRefGoogle Scholar
  4. 4.
    Y. Chen, J. Yang, X. Ou, and X. Zhang (2012). Chem. Commun. 48, 5883–5885.CrossRefGoogle Scholar
  5. 5.
    H. Li, Y. Guo, L. Xiao, and B. Chen (2014). Analyst 139, 285–289.CrossRefGoogle Scholar
  6. 6.
    Y. Tao, M. Li, J. Ren, and X. Qu (2015). Chem. Soc. Rev. 44, 8636–8663.CrossRefGoogle Scholar
  7. 7.
    Y. Zhong, Q. Wang, Y. He, Y. Ge, and G. Song (2015). Sens. Actuators B Chem. 209, 147–153.CrossRefGoogle Scholar
  8. 8.
    R. Ghosh, A. K. Sahoo, S. S. Ghosh, A. Paul, and A. Chattopadhyay (2014). ACS Appl. Mater. Interfaces 6, 3822–3828.CrossRefGoogle Scholar
  9. 9.
    Z. Gao, R. Su, W. Qi, L. Wang, and Z. He (2014). Sens. Actuators B Chem. 195, 359–364.CrossRefGoogle Scholar
  10. 10.
    S. Aswathy Aromal and D. Philip (2012). Physica E 44, 1692–1696.CrossRefGoogle Scholar
  11. 11.
    H. Cao, Z. Chen, and Y. Huang (2015). Talanta 143, 450–456.CrossRefGoogle Scholar
  12. 12.
    H. Cao, Z. Chen, H. Zheng, and Y. Huang (2014). Biosens. Bioelectron. 62, 189–195.CrossRefGoogle Scholar
  13. 13.
    H. Rao, H. Ge, Z. Lu, W. Liu, Z. Chen, Z. Zhang, X. Wang, P. Zou, Y. Wang, H. He, and X. Zeng (2016). Microchim. Acta 183, 1651–1657.CrossRefGoogle Scholar
  14. 14.
    G. L. Praveen, G. M. Lekha, V. M. Visakh, L. R. Reshma, and S. George (2014). J. Nanopart. Res. 16, 2522.CrossRefGoogle Scholar
  15. 15.
    D. Tian, Z. Qian, Y. Xia, and C. Zhu (2012). Langmuir 28, 3945–3951.CrossRefGoogle Scholar
  16. 16.
    L. Yan, Y. Cai, B. Zheng, H. Yuan, Y. Guo, D. Xiao, and M. M. F. Choi (2012). J. Mater. Chem. 22, 1000–1005.CrossRefGoogle Scholar
  17. 17.
    N. Goswami, A. Giri, M. S. Bootharaju, P. L. Xavier, T. Pradeep, and S. K. Pal (2011). Anal. Chem. 83, 9676–9680.CrossRefGoogle Scholar
  18. 18.
    S. L. Cumberland and G. F. Strouse (2002). Langmuir 18, 269–276.CrossRefGoogle Scholar
  19. 19.
    S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interface Sci. 275, 496–502.CrossRefGoogle Scholar
  20. 20.
    D. S. Sheny, J. Mathew, and D. Philip (2011). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79, 254–262.CrossRefGoogle Scholar
  21. 21.
    D. Mott, J. Galkowski, L. Wang, J. Luo, and C.-J. Zhong (2007). Langmuir 23, 5740–5745.CrossRefGoogle Scholar
  22. 22.
    C. Salzemann, I. Lisiecki, A. Brioude, J. Urban, and M. P. Pileni (2004). J. Phys. Chem. B 108, 13242–13248.CrossRefGoogle Scholar
  23. 23.
    G. K. B. Lopes, H. M. Schulman, and M. Hermes-Lima (1999). Biochim. et Biophys. Acta (BBA) Gen. Subj. 1472, 142–152.CrossRefGoogle Scholar
  24. 24.
    G. Shen, R. Xing, N. Zhang, C. Chen, G. Ma, and X. Yan (2016). ACS Nano 10, 5720–5729.CrossRefGoogle Scholar
  25. 25.
    A. Singh, T. Rai, and D. Panda (2016). RSC Adv. 6, 55539–55545.CrossRefGoogle Scholar
  26. 26.
    L.-Y. Chen, C.-W. Wang, Z. Yuan, and H.-T. Chang (2015). Anal. Chem. 87, 216–229.CrossRefGoogle Scholar
  27. 27.
    Z. Wu, J. Liu, Y. Gao, H. Liu, T. Li, H. Zou, Z. Wang, K. Zhang, Y. Wang, H. Zhang, and B. Yang (2015). J. Am. Chem. Soc. 137, 12906–12913.CrossRefGoogle Scholar
  28. 28.
    Z. Luo, X. Yuan, Y. Yu, Q. Zhang, D. T. Leong, J. Y. Lee, and J. Xie (2012). J. Am. Chem. Soc. 134, 16662–16670.CrossRefGoogle Scholar
  29. 29.
    O. S. Wolfbeis (2015). Chem. Soc. Rev. 44, 4743–4768.CrossRefGoogle Scholar
  30. 30.
    K. Sauer, H. Scheer, and P. Sauer (1987). Photochem. Photobiol. 46, 427–440.CrossRefGoogle Scholar
  31. 31.
    J. R. Lakowicz and G. Weber (1973). Biochemistry 12, 4161–4170.CrossRefGoogle Scholar
  32. 32.
    J. Zhu, X. Song, L. Gao, Z. Li, Z. Liu, S. Ding, S. Zou, and Y. He (2014). Biosens. Bioelectron. 53, 71–75.CrossRefGoogle Scholar
  33. 33.
    R. M. Jones, T. S. Bergstedt, D. W. McBranch, and D. G. Whitten (2001). J. Am. Chem. Soc. 123, 6726–6727.CrossRefGoogle Scholar
  34. 34.
    C. B. Murphy, Y. Zhang, T. Troxler, V. Ferry, J. J. Martin, and W. E. Jones (2004). J. Phys. Chem. B 108, 1537–1543.CrossRefGoogle Scholar
  35. 35.
    J. R. Bhamore, S. Jha, A. K. Mungara, R. K. Singhal, D. Sonkeshariya, and S. K. Kailasa (2016). Biosens. Bioelectron. 80, 243–248.CrossRefGoogle Scholar
  36. 36.
    B. Aswathy and G. Sony (2014). Microchem. J. 116, 151–156.CrossRefGoogle Scholar
  37. 37.
    C. V. Durgadas, C. P. Sharma, and K. Sreenivasan (2011). Analyst 136, 933–940.CrossRefGoogle Scholar
  38. 38.
    N. R. Perron and J. L. Brumaghim (2009). Cell Biochem. Biophys. 53, 75–100.CrossRefGoogle Scholar
  39. 39.
    C. Tang, D. Amin, P. B. Messersmith, and J. E. Anthony (2015). R.K. Prud’homme. Langmuir 31, 3612–3620.CrossRefGoogle Scholar
  40. 40.
    L. Fan, Y. Ma, Y. Su, R. Zhang, Y. Liu, Q. Zhang, and Z. Jiang (2015). RSC Adv. 5, 107777–107784.CrossRefGoogle Scholar
  41. 41.
    J.-A. Annie Ho, H.-C. Chang, and W.-T. Su (2012). Anal. Chem. 84, 3246–3253.CrossRefGoogle Scholar
  42. 42.
    J. R. Andersen and S. Reimert (1986). Analyst 111, 657–660.CrossRefGoogle Scholar
  43. 43.
    Z. Guo, M. L. Seol, M. S. Kim, J. H. Ahn, Y. K. Choi, J. H. Liu, and X. J. Huang (2013). Analyst 138, 2683–2690.CrossRefGoogle Scholar
  44. 44.
    X. Liu, L. Cheng, J. Lei, and H. Ju (2008). Analyst 133, 1161–1163.CrossRefGoogle Scholar
  45. 45.
    K. Min and Y. J. Yoo (2009). Talanta 80, 1007–1011.CrossRefGoogle Scholar
  46. 46.
    Z. Chen, C. Zhang, T. Zhou, and H. Ma (2015). Microchim. Acta 182, 1003–1008.CrossRefGoogle Scholar
  47. 47.
    Y. Jiang, B. Wang, F. Meng, Y. Cheng, and C. Zhu (2015). J. Colloid Interface Sci. 452, 199–202.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemistry, School of Physical and Mathematical SciencesUniversity of KeralaThiruvananthapuramIndia
  2. 2.Department of ChemistryUniversity CollegeThiruvananthapuramIndia

Personalised recommendations