Skip to main content
Log in

New Colorimetric Detection of Monosaccharides Based on Transformation of Silver Chloride Nanoparticles to Silver Nanoparticles Synthesized by Sargassum Alga

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present study, a simple and eco-friendly method was developed for preparation of stable silver chloride nanoparticles by aqueous extract of Sargassum boveanum alga collected from the Persian Gulf. By increasing the pH, the as-prepared silver chloride nanoparticles were transformed to the silver nanoparticles. The green synthesized silver chloride nanoparticles were developed as a colorimetric assay for determination of monosaccharides. The color of solution changed from bright yellow to dark brown gradually when an increase of monosaccharides concentration occurred and a new absorption band appeared at higher wavelengths which indicated the aggregation of silver nanoparticles. In fact, the production rate of silver nanoparticles increased in the presence of monosaccharides at alkaline condition. Moreover, the enlargement and aggregation of silver nanoparticles occurred. The absorbance at 600 nm was found to be linearly dependent on the glucose, fructose and galactose concentrations in the range of 5–900, 1–500 and 1–300 μM with a limit of detection of 1, 0.5 and 0.5 μM respectively. Finally, the proposed green synthesized nanoparticles showed high selectivity toward monosaccharides determination in alkaline solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Li, A. Wieckowska, and I. Willner (2008). Angew. Chem. Int. Ed. 47, 3927.

    Article  CAS  Google Scholar 

  2. D. Vilela, M. C. González, and A. Escarpa (2012). Anal. Chim. Acta 751, 24.

    Article  CAS  Google Scholar 

  3. R. J. Stokes, A. MacAskill, P. J. Lundahl, W. E. Smith, K. Faulds, and D. Graham (2007). Small 9, 1593.

    Article  Google Scholar 

  4. V. Pitthard and P. Finch (2001). Chromatographia 53, S317.

    Article  CAS  Google Scholar 

  5. J. D. Olivera, M. Gaborieaub, E. F. Hilderc, and P. Castignolles (2013). J. Chromatogr. A 1291, 179.

    Article  Google Scholar 

  6. J.-H. Xie, M.-Y. Shen, S.-P. Nie, X. Liu, H. Zhang, and M.-Y. Xie (2013). Carbohydr. Polym. 98, 976.

    Article  CAS  Google Scholar 

  7. W. S. York, S. Hantus, P. Albersheim, and A. G. Darvill (1997). Carbohydr. Res. 300, 199.

    Article  CAS  Google Scholar 

  8. N. DiCesare and J. R. Lakowicz (2001). Chem. Commun. 2022.

  9. N. DiCesare and J. R. Lakowicz (2002). Tetrahedron Lett. 43, 2615.

    Article  CAS  Google Scholar 

  10. R. Badugu, J. R. Lakowicz, and C. D. Geddes (2006). Dyes Pigments 68, 159.

    Article  CAS  Google Scholar 

  11. M. He, R. J. Johnson, J. O. Escobedo, P. A. Beck, B. J. Melancon, W. D. Treleaven, R. M. Strongin, P. T. Lewis, K. K. Kim, N. N. St Luce, A. A. Mrse, C. J. Davis, and F. R. Fronczek (2002). J. Am. Chem. Soc. 124, 5000.

    Article  CAS  Google Scholar 

  12. L. Saa, M. Coronado-Puchau, V. Pavlov, and L. M. Liz-Marzán (2014). Nanoscale 6, 7405.

    Article  CAS  Google Scholar 

  13. L. Fruk and C. M. Niemeyer (2005). Angew. Chem. Int. Ed. 44, 2603.

    Article  CAS  Google Scholar 

  14. C. Xu and Z. Zhang (2001). Anal. Sci. 17, 1449.

    Article  CAS  Google Scholar 

  15. X.-M. Huang, M. Zhu, L.-Y. Mao, and H.-X. Shen (1997). Anal. Sci. 13, 145.

    Article  CAS  Google Scholar 

  16. B. Tang, G.-Y. Zhang, Y. Liu, and F. Han (2002). Anal. Chim. Acta 459, 83.

    Article  CAS  Google Scholar 

  17. H. Wei and E. Wang (2008). Anal. Chem. 80, 2250.

    Article  CAS  Google Scholar 

  18. H. Jiang, Z. Chen, H. Cao, and Y. Huang (2012). Analyst 137, 5560.

    Article  CAS  Google Scholar 

  19. L. Su, J. Feng, X. M. Zhou, C. L. Ren, H. H. Li, and X. G. Chen (2012). Anal. Chem. 84, 5753.

    Article  CAS  Google Scholar 

  20. A. K. Dutta, S. Das, S. Samanta, P. K. Samanta, B. Adhikary, and P. Biswas (2013). Talanta 107, 361.

    Article  CAS  Google Scholar 

  21. Q. Liu, Q. Jia, R. Zhua, Q. Shao, D. Wang, P. Cui, and J. Ge (2014). Mater. Sci. Eng. C 42, 177.

    Article  Google Scholar 

  22. W. Shi, X. Zhang, S. He, and Y. Huang (2011). Chem. Commun. 47, 10785.

    Article  CAS  Google Scholar 

  23. F. Qiao, L. Chen, X. Li, L. Li, and S. Ai (2014). Sens. Actuator B 193, 255.

    Article  CAS  Google Scholar 

  24. W. Chen, J. Chen, Y.-B. Feng, L. Hong, Q.-Y. Chen, L.-F. Wu, X.-H. Lina, and X.-H. Xia (2012). Analyst 137, 1706.

    Article  CAS  Google Scholar 

  25. Y. L. Liu, X. J. Zhao, X. X. Yang, and Y. F. Li (2013). Analyst 138, 4526.

    Article  CAS  Google Scholar 

  26. R. Cui, Z. Han, and J.-J. Zhu (2011). Chem. Eur. J. 17, 9377.

    Article  CAS  Google Scholar 

  27. Y. Song, K. Qu, C. Zhao, J. Ren, and X. Qu (2010). Adv. Mater. 22, 2206.

    Article  CAS  Google Scholar 

  28. W. Shi, Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng, and Y. Huang (2011). Chem. Commun. 47, 6695.

    Article  CAS  Google Scholar 

  29. A. Pandya, P. G. Sutariya, and S. K. Menon (2013). Analyst 138, 2483.

    Article  CAS  Google Scholar 

  30. K. Cao, X. Jiang, S. Yan, L. Zhang, and W. Wu (2014). Biosens. Bioelectron. 52, 188.

    Article  CAS  Google Scholar 

  31. Q. Zhao, S. Chen, H. Huang, L. Zhang, L. Wang, F. Liu, J. Chen, Y. Zeng, and P. K. Chu (2014). Analyst 139, 1498.

    Article  CAS  Google Scholar 

  32. J. Yuana, W. Guoa, J. Yinb, and E. Wang (2009). Talanta 77, 1858.

    Article  Google Scholar 

  33. N. Asmathunisha and K. Kathiresan (2013). Colloids Surf. B 103, 283.

    Article  CAS  Google Scholar 

  34. G. Singaravelu, J. S. Arockiamary, V. Ganesh Kumar, and K. Govindaraju (2007). Colloids Surf. B 57, 97.

    Article  CAS  Google Scholar 

  35. Y. N. Mata, E. Torres, M. L. Blázquez, A. Ballester, F. González, and J. A. Mũnoz (2009). J. Hazard. Mater. 166, 612.

    Article  CAS  Google Scholar 

  36. C. M. Ramakritinan, E. Kaarunya, S. Shankar, and A. K. Kumaraguru (2013). Solid State Phenom. 201, 211.

    Article  Google Scholar 

  37. M. Vivek, P. S. Kumar, S. Steffi, and S. Sudha (2011). Avicenna J. Med Biotechnol. 3, 143.

    CAS  Google Scholar 

  38. T. Stalin Dhas, V. Ganesh Kumar, V. Karthick, K. Jini Angel, and K. Govindaraju (2014). Spectrochim. Acta A 120, 416.

    Article  CAS  Google Scholar 

  39. S. Momeni and I. Nabipour (2015). Appl. Biochem. Biotechnol. 176, 1937.

    Article  CAS  Google Scholar 

  40. P. Atkins and J. de Paula Physical Chemistry, 8th ed (W.H. Freeman, New York, 2006).

    Google Scholar 

  41. C. An, S. Peng, and Y. Sun (2010). Adv. Mater. 22, 2570.

    Article  CAS  Google Scholar 

  42. H. Xu, H. Li, J. Xia, S. Yin, Z. Luo, L. Liu, and L. Xu (2011). ACS Appl. Mater. Interfaces 3, 22.

    Article  CAS  Google Scholar 

  43. G. Wang, T. Nishio, M. Sato, A. Ishikawa, K. Nambara, K. Nagakawa, Y. Matsuo, K. Niikura, and K. Ijiro (2011). Chem. Commun. 47, 9426.

    Article  CAS  Google Scholar 

  44. G. Wang, H. Mitomo, Y. Matsuo, K. Niikura, M. Maeda, and K. Ijiro (2015). J. Colloid Interface Sci. 452, 224.

    Article  CAS  Google Scholar 

  45. J. T. Huang, X. X. Yang, Q. L. Zenga, and J. Wang (2013). Analyst 138, 5296.

    Article  CAS  Google Scholar 

  46. S. Nishimura, D. Mott, A. Takagaki, S. Maenosono, and K. Ebitani (2011). Phys. Chem. Chem. Phys. 13, 9335.

    Article  CAS  Google Scholar 

  47. M. Darroudi, M. B. Ahmad, A. H. Abdullah, N. A. Ibrahim, and K. Shameli (2010). Int. J. Mol. Sci. 11, 3898.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was partly supported by Iran National Science Foundation (Research Chair Award No. 95/INSF/44913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safieh Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, S., Nabipour, I., Karimi, S. et al. New Colorimetric Detection of Monosaccharides Based on Transformation of Silver Chloride Nanoparticles to Silver Nanoparticles Synthesized by Sargassum Alga. J Clust Sci 28, 2205–2221 (2017). https://doi.org/10.1007/s10876-017-1220-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1220-2

Keywords

Navigation