Journal of Cluster Science

, Volume 28, Issue 4, pp 2205–2221 | Cite as

New Colorimetric Detection of Monosaccharides Based on Transformation of Silver Chloride Nanoparticles to Silver Nanoparticles Synthesized by Sargassum Alga

  • Safieh Momeni
  • Iraj Nabipour
  • Sadegh Karimi
  • Maryam Farrokhnia
Original Paper
  • 136 Downloads

Abstract

In the present study, a simple and eco-friendly method was developed for preparation of stable silver chloride nanoparticles by aqueous extract of Sargassum boveanum alga collected from the Persian Gulf. By increasing the pH, the as-prepared silver chloride nanoparticles were transformed to the silver nanoparticles. The green synthesized silver chloride nanoparticles were developed as a colorimetric assay for determination of monosaccharides. The color of solution changed from bright yellow to dark brown gradually when an increase of monosaccharides concentration occurred and a new absorption band appeared at higher wavelengths which indicated the aggregation of silver nanoparticles. In fact, the production rate of silver nanoparticles increased in the presence of monosaccharides at alkaline condition. Moreover, the enlargement and aggregation of silver nanoparticles occurred. The absorbance at 600 nm was found to be linearly dependent on the glucose, fructose and galactose concentrations in the range of 5–900, 1–500 and 1–300 μM with a limit of detection of 1, 0.5 and 0.5 μM respectively. Finally, the proposed green synthesized nanoparticles showed high selectivity toward monosaccharides determination in alkaline solution.

Keywords

Silver nanoparticle Silver chloride Monosaccharides Colorimetric sensor Sargassum Alga 

Notes

Acknowledgements

This project was partly supported by Iran National Science Foundation (Research Chair Award No. 95/INSF/44913).

References

  1. 1.
    D. Li, A. Wieckowska, and I. Willner (2008). Angew. Chem. Int. Ed. 47, 3927.CrossRefGoogle Scholar
  2. 2.
    D. Vilela, M. C. González, and A. Escarpa (2012). Anal. Chim. Acta 751, 24.CrossRefGoogle Scholar
  3. 3.
    R. J. Stokes, A. MacAskill, P. J. Lundahl, W. E. Smith, K. Faulds, and D. Graham (2007). Small 9, 1593.CrossRefGoogle Scholar
  4. 4.
    V. Pitthard and P. Finch (2001). Chromatographia 53, S317.CrossRefGoogle Scholar
  5. 5.
    J. D. Olivera, M. Gaborieaub, E. F. Hilderc, and P. Castignolles (2013). J. Chromatogr. A 1291, 179.CrossRefGoogle Scholar
  6. 6.
    J.-H. Xie, M.-Y. Shen, S.-P. Nie, X. Liu, H. Zhang, and M.-Y. Xie (2013). Carbohydr. Polym. 98, 976.CrossRefGoogle Scholar
  7. 7.
    W. S. York, S. Hantus, P. Albersheim, and A. G. Darvill (1997). Carbohydr. Res. 300, 199.CrossRefGoogle Scholar
  8. 8.
    N. DiCesare and J. R. Lakowicz (2001). Chem. Commun. 2022.Google Scholar
  9. 9.
    N. DiCesare and J. R. Lakowicz (2002). Tetrahedron Lett. 43, 2615.CrossRefGoogle Scholar
  10. 10.
    R. Badugu, J. R. Lakowicz, and C. D. Geddes (2006). Dyes Pigments 68, 159.CrossRefGoogle Scholar
  11. 11.
    M. He, R. J. Johnson, J. O. Escobedo, P. A. Beck, B. J. Melancon, W. D. Treleaven, R. M. Strongin, P. T. Lewis, K. K. Kim, N. N. St Luce, A. A. Mrse, C. J. Davis, and F. R. Fronczek (2002). J. Am. Chem. Soc. 124, 5000.CrossRefGoogle Scholar
  12. 12.
    L. Saa, M. Coronado-Puchau, V. Pavlov, and L. M. Liz-Marzán (2014). Nanoscale 6, 7405.CrossRefGoogle Scholar
  13. 13.
    L. Fruk and C. M. Niemeyer (2005). Angew. Chem. Int. Ed. 44, 2603.CrossRefGoogle Scholar
  14. 14.
    C. Xu and Z. Zhang (2001). Anal. Sci. 17, 1449.CrossRefGoogle Scholar
  15. 15.
    X.-M. Huang, M. Zhu, L.-Y. Mao, and H.-X. Shen (1997). Anal. Sci. 13, 145.CrossRefGoogle Scholar
  16. 16.
    B. Tang, G.-Y. Zhang, Y. Liu, and F. Han (2002). Anal. Chim. Acta 459, 83.CrossRefGoogle Scholar
  17. 17.
    H. Wei and E. Wang (2008). Anal. Chem. 80, 2250.CrossRefGoogle Scholar
  18. 18.
    H. Jiang, Z. Chen, H. Cao, and Y. Huang (2012). Analyst 137, 5560.CrossRefGoogle Scholar
  19. 19.
    L. Su, J. Feng, X. M. Zhou, C. L. Ren, H. H. Li, and X. G. Chen (2012). Anal. Chem. 84, 5753.CrossRefGoogle Scholar
  20. 20.
    A. K. Dutta, S. Das, S. Samanta, P. K. Samanta, B. Adhikary, and P. Biswas (2013). Talanta 107, 361.CrossRefGoogle Scholar
  21. 21.
    Q. Liu, Q. Jia, R. Zhua, Q. Shao, D. Wang, P. Cui, and J. Ge (2014). Mater. Sci. Eng. C 42, 177.CrossRefGoogle Scholar
  22. 22.
    W. Shi, X. Zhang, S. He, and Y. Huang (2011). Chem. Commun. 47, 10785.CrossRefGoogle Scholar
  23. 23.
    F. Qiao, L. Chen, X. Li, L. Li, and S. Ai (2014). Sens. Actuator B 193, 255.CrossRefGoogle Scholar
  24. 24.
    W. Chen, J. Chen, Y.-B. Feng, L. Hong, Q.-Y. Chen, L.-F. Wu, X.-H. Lina, and X.-H. Xia (2012). Analyst 137, 1706.CrossRefGoogle Scholar
  25. 25.
    Y. L. Liu, X. J. Zhao, X. X. Yang, and Y. F. Li (2013). Analyst 138, 4526.CrossRefGoogle Scholar
  26. 26.
    R. Cui, Z. Han, and J.-J. Zhu (2011). Chem. Eur. J. 17, 9377.CrossRefGoogle Scholar
  27. 27.
    Y. Song, K. Qu, C. Zhao, J. Ren, and X. Qu (2010). Adv. Mater. 22, 2206.CrossRefGoogle Scholar
  28. 28.
    W. Shi, Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng, and Y. Huang (2011). Chem. Commun. 47, 6695.CrossRefGoogle Scholar
  29. 29.
    A. Pandya, P. G. Sutariya, and S. K. Menon (2013). Analyst 138, 2483.CrossRefGoogle Scholar
  30. 30.
    K. Cao, X. Jiang, S. Yan, L. Zhang, and W. Wu (2014). Biosens. Bioelectron. 52, 188.CrossRefGoogle Scholar
  31. 31.
    Q. Zhao, S. Chen, H. Huang, L. Zhang, L. Wang, F. Liu, J. Chen, Y. Zeng, and P. K. Chu (2014). Analyst 139, 1498.CrossRefGoogle Scholar
  32. 32.
    J. Yuana, W. Guoa, J. Yinb, and E. Wang (2009). Talanta 77, 1858.CrossRefGoogle Scholar
  33. 33.
    N. Asmathunisha and K. Kathiresan (2013). Colloids Surf. B 103, 283.CrossRefGoogle Scholar
  34. 34.
    G. Singaravelu, J. S. Arockiamary, V. Ganesh Kumar, and K. Govindaraju (2007). Colloids Surf. B 57, 97.CrossRefGoogle Scholar
  35. 35.
    Y. N. Mata, E. Torres, M. L. Blázquez, A. Ballester, F. González, and J. A. Mũnoz (2009). J. Hazard. Mater. 166, 612.CrossRefGoogle Scholar
  36. 36.
    C. M. Ramakritinan, E. Kaarunya, S. Shankar, and A. K. Kumaraguru (2013). Solid State Phenom. 201, 211.CrossRefGoogle Scholar
  37. 37.
    M. Vivek, P. S. Kumar, S. Steffi, and S. Sudha (2011). Avicenna J. Med Biotechnol. 3, 143.Google Scholar
  38. 38.
    T. Stalin Dhas, V. Ganesh Kumar, V. Karthick, K. Jini Angel, and K. Govindaraju (2014). Spectrochim. Acta A 120, 416.CrossRefGoogle Scholar
  39. 39.
    S. Momeni and I. Nabipour (2015). Appl. Biochem. Biotechnol. 176, 1937.CrossRefGoogle Scholar
  40. 40.
    P. Atkins and J. de Paula Physical Chemistry, 8th ed (W.H. Freeman, New York, 2006).Google Scholar
  41. 41.
    C. An, S. Peng, and Y. Sun (2010). Adv. Mater. 22, 2570.CrossRefGoogle Scholar
  42. 42.
    H. Xu, H. Li, J. Xia, S. Yin, Z. Luo, L. Liu, and L. Xu (2011). ACS Appl. Mater. Interfaces 3, 22.CrossRefGoogle Scholar
  43. 43.
    G. Wang, T. Nishio, M. Sato, A. Ishikawa, K. Nambara, K. Nagakawa, Y. Matsuo, K. Niikura, and K. Ijiro (2011). Chem. Commun. 47, 9426.CrossRefGoogle Scholar
  44. 44.
    G. Wang, H. Mitomo, Y. Matsuo, K. Niikura, M. Maeda, and K. Ijiro (2015). J. Colloid Interface Sci. 452, 224.CrossRefGoogle Scholar
  45. 45.
    J. T. Huang, X. X. Yang, Q. L. Zenga, and J. Wang (2013). Analyst 138, 5296.CrossRefGoogle Scholar
  46. 46.
    S. Nishimura, D. Mott, A. Takagaki, S. Maenosono, and K. Ebitani (2011). Phys. Chem. Chem. Phys. 13, 9335.CrossRefGoogle Scholar
  47. 47.
    M. Darroudi, M. B. Ahmad, A. H. Abdullah, N. A. Ibrahim, and K. Shameli (2010). Int. J. Mol. Sci. 11, 3898.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Safieh Momeni
    • 1
  • Iraj Nabipour
    • 1
  • Sadegh Karimi
    • 2
  • Maryam Farrokhnia
    • 1
  1. 1.The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research InstituteBushehr University of Medical SciencesBushehrIran
  2. 2.Department of Chemistry, Faculty of SciencesPersian Gulf UniversityBushehrIran

Personalised recommendations