Journal of Cluster Science

, Volume 28, Issue 4, pp 1803–1813 | Cite as

Preparations and Applications of Polysaccharide Based Green Synthesized Metal Nanoparticles: A State-of-the-Art

  • Aparna Banerjee
  • Urmi Halder
  • Rajib Bandopadhyay
Review Paper


Green chemistry is the torch bearing field of sustainable research where without use of any toxic chemicals, environment-friendly metal nanoparticles are produced. Advantages of green nanoparticle synthesis over chemical-based synthesis are its nearly zero toxicity with wider applications. As the multidrug resistant species begin to emerge, green synthesized nanoparticles have been arisen as a potent alternative of antimicrobials along with various other applications in diverse fields. The main hindrances behind green synthesis are choice of material and its availability. Because of cheaper cost, wide availability, enhanced effectivity and fewer side effects, polysaccharides have successfully replaced the position of chemical reducing agents in nanoparticle synthesis. Our present review focuses on preparation and applications of polysaccharide based metal nanoparticles; a state-of-the-art research with special emphasis on green synthesized silver nanoparticles as a potent source of emerging antimicrobial.


Polysaccharide Nanoparticle Characterization Applications 



Authors are thankful to UGC-Center of Advanced Study, Department of Botany, The University of Burdwan for pursuing research activities. Aparna Banerjee is also thankful to JRF (State Funded) for the financial assistance [Fc (Sc.)/RS/SF/BOT./2014-15/103 (3)].


  1. 1.
    M. C. Daniel and D. Astruc (2004). J. Chem. Rev. 104, 293–346.CrossRefGoogle Scholar
  2. 2.
    A. Krolikowska, A. Kudelski, A. Michota, and J. Bukowska (2003). Surf. Sci. 532, 227–232.CrossRefGoogle Scholar
  3. 3.
    V. P. Zharov, J. W. Kim, D. T. Curiel, and M. Everts (2005). Nanotechnol. Biol. Med. 1, 326–345.CrossRefGoogle Scholar
  4. 4.
    A. Kumar, S. Mandal, P. R. Selvakannan, R. Parischa, A. B. Mandale, and M. Sastry (2003). Langmuir. 19, 6277–6282.CrossRefGoogle Scholar
  5. 5.
    K. Bogunia-Kubik and M. Sugisaka (2002). BioSystems. 65, 123–138.CrossRefGoogle Scholar
  6. 6.
    M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, and G. E. J. Poinern (2015). Materials 8, 7278–7308.CrossRefGoogle Scholar
  7. 7.
    M. Esparza-Soto and P. Westerhoff (2003). Water Res. 37, 2301–2310.CrossRefGoogle Scholar
  8. 8.
    J. C. Liu, G. Qin, P. Raveendran, and P. Ikushimax (2006). Chem. Eur. J. 12, 2131–2138.CrossRefGoogle Scholar
  9. 9.
    K. Balantrapu and D. V. Goia (2009). J. Mater. Res. 24, 2828–2836.CrossRefGoogle Scholar
  10. 10.
    M. A. Albrecht, C. W. Evans, and C. L. Raston (2006). Green Chem. 8, 417–432.CrossRefGoogle Scholar
  11. 11.
    T. Sun and K. Seff (1994). Chem. Rev. 94, 857–870.CrossRefGoogle Scholar
  12. 12.
    D. J. Xiong, M. L. Chen, and H. Li (2008) Chem. Commun. 7, 880–882.CrossRefGoogle Scholar
  13. 13.
    N. Duran, P. D. Marcato, O. L. Alves, G. I. H. De Souza, and E. J. Esposito (2005). J. Nanobiotechnology. 3, 8.CrossRefGoogle Scholar
  14. 14.
    S. Basu, S. Jana, S. Pande, and T. J. Pal (2008). J. Colloid Interface Sci. 321, 288–293.CrossRefGoogle Scholar
  15. 15.
    I. Brigger, C. Dubernet, and P. Couvreur (2004). P. Adv. Drug. Deliv. Rev. 54, 631–651.CrossRefGoogle Scholar
  16. 16.
    M. G. Guzman, J. Dille, and S. Godet (2008). World Acad. Sci. Eng. Technolo. 43, 357–364.Google Scholar
  17. 17.
    Z. Zhu, L. Kai, and Y. Wang (2006). Mater. Chem. Phys. 96, 447–453.CrossRefGoogle Scholar
  18. 18.
    I. Sondi and B. J. Salopek-Sondi (2004). J. Colloid Interface Sci. 275, 177–182.CrossRefGoogle Scholar
  19. 19.
    D. Yu and V. W. Yam (2004). J. Am. Chem. Soc. 126, 13200–13201.CrossRefGoogle Scholar
  20. 20.
    M. Harada, Y. Inada, and M. J. Nomura (2009). J. Colloid Interface Sci. 337, 427–438.CrossRefGoogle Scholar
  21. 21.
    S. T. Dubas and V. Pimpan (2008). Talanta 76, 29–33.CrossRefGoogle Scholar
  22. 22.
    A. Taleb, C. Petit, and M. P. Pileni (1997). Chem. Mater. 9, 950–959.CrossRefGoogle Scholar
  23. 23.
    A. Henglein (2001). Langmuir 17, 2329–2333.CrossRefGoogle Scholar
  24. 24.
    K. Esumi, T. Tano, K. Torigoe, and K. Meguro (1990). Chem. Mater. 2, 564–567.CrossRefGoogle Scholar
  25. 25.
    J. J. Zhu, S. W. Liu, O. Palchik, Y. Koltypin, and A. Gedanken (2000). Langmuir 16, 6396–6399.CrossRefGoogle Scholar
  26. 26.
    V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Ads. Colloid Interface Sci. 145, 83–96.CrossRefGoogle Scholar
  27. 27.
    J. Xie, J. Y. Lee, D. I. C. Wang, and Y. P. Ting (2007). ACS Nano. 1, 429–439.CrossRefGoogle Scholar
  28. 28.
    J. I. Hussain, S. Kumar, A. A. Hashmi, and Z. Khan (2011). Adv. Mat. Lett. 2, 188–194.CrossRefGoogle Scholar
  29. 29.
    Y. Park, Y. N. Hong, A. Weyers, Y. S. Kim, and R. J. Linhardt (2011). IET Nanobiotechnol. 5, 69–78.CrossRefGoogle Scholar
  30. 30.
    D. A. Geraldo, P. Needham, N. Chandia, R. Arratia-Perez, G. C. Mora, and N. A. Villagra (2016). Biointerface Res. Appl. Chem. 6, 1263–1271.Google Scholar
  31. 31.
    S. Singh, A. S. Vidyarthi, V. K. Nigam, and A. Dev (2014). Artif. Cells Nanomed. Biotechnol. 42, 6–12.CrossRefGoogle Scholar
  32. 32.
    P. Kanmani and S. T. Lim (2013). Process Biochem. 48, 1099–1106.CrossRefGoogle Scholar
  33. 33.
    R. Selvakumar, S. Aravindh, A. M. Ashok, and Y. L. Balachandran (2014). J. Exp. Nanosci. 9, 1075–1087.CrossRefGoogle Scholar
  34. 34.
    G. Sathiyanarayanan, G. S. Kiran, and J. Selvin (2013). Colloids Surf., B. 102, 13–20.CrossRefGoogle Scholar
  35. 35.
    V. Venkatpurwar and V. Pokharkar (2011). Mater. Lett. 65, 999–1002.CrossRefGoogle Scholar
  36. 36.
    A. Travan, C. Pelillo, I. Donati, E. Marsich, M. Benincasa, T. Scarpa, S. Semeraro, G. Turco, R. Gennaro, and S. Paoletti (2009). Biomacromolecules 10, 1429–1435.CrossRefGoogle Scholar
  37. 37.
    A. J. Kora, S. R. Beedu, and A. Jayaraman (2012). Org. Med. Chem. Lett. 2, 17.CrossRefGoogle Scholar
  38. 38.
    G. Li, Y. Li, Z. Wang, and H. Liu (2017). Mater. Chem. Phys. 187, 133–140.CrossRefGoogle Scholar
  39. 39.
    S. K. Srikar, D. D. Giri, D. B. Pal, P. K. Mishra, and S. N. Upadhyay (2016). Green and Sustainable Chemistry 6, 34.CrossRefGoogle Scholar
  40. 40.
    B. Le Ouay and F. Stellacci (2015). Nano Today 10, 339–354.CrossRefGoogle Scholar
  41. 41.
    S. Pal, Y. K. Tak, and J. M. Song (2007). Appl. Environ. Microbiol. 73, 1712–1720.CrossRefGoogle Scholar
  42. 42.
    A. Nanda and C. M. Raghavan (2014). Int. J. Chem. Tech. Res. 6, 2914–2919.Google Scholar
  43. 43.
    M. Rai, A. Yadav, and A. Gade (2009). Biotechnol. Adv. 27, 76–83.CrossRefGoogle Scholar
  44. 44.
    F. Baldi, S. Daniele, M. Gallo, S. Paganelli, D. Battistel, O. Piccolo, C. Faleri, A. M. Puglia, and G. Gallo (2016). BioMetals 29, 321–331.CrossRefGoogle Scholar
  45. 45.
    H. M. El-Rafie, M. H. El-Rafie, and M. K. Zahran (2013). Carbohydr. Polym. 96, 403–410.CrossRefGoogle Scholar
  46. 46.
    K. Murugan, A. Jaganathan, U. Suresh, R. Rajaganesh, S. Jayasanthini, A. Higuchi, S. Kumar, and G. Benelli (2017). J. Clust. Sci. 28, 529–550.CrossRefGoogle Scholar
  47. 47.
    G. Benelli, P. Roman, M. Filippo, P. Riccardo, and Marcello Nicoletti (2017). J. Clust. Sci. 28, 3–10.CrossRefGoogle Scholar
  48. 48.
    G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1–2.CrossRefGoogle Scholar
  49. 49.
    K. Murugan, A. Jaganathan, D. Devakumar, S. Udaiyan, R. Rajapandian, C. Balamurugan, J. Subramaniam, M. Paulpandi, C. Vadivalagan, P. Amuthavalli, L. Wang, J. Hwang, H. Wei, M. S. Alsalhi, S. Devanesan, S. Kumar, K. Pugazhendy, A. Higuchi, M. Nicoletti, and G. Benelli (2016). Ecotoxicol. Environ. Saf. 132, 318–328.CrossRefGoogle Scholar
  50. 50.
    R. Patel and S. Suresh (2006). J. Hazard. Mater. 137, 1729e1741.CrossRefGoogle Scholar
  51. 51.
    A. Safavi and S. Momeni (2012). J. Hazard. Mater. 201, 125e131.Google Scholar
  52. 52.
    W. Salem, D. R. Leitner, F. G. Zingl, G. Schratter, R. Prassl, W. Goessler, J. Reidl, and S. Schild (2015). Int. J. Med. Microbiol. 305, 85–95.CrossRefGoogle Scholar
  53. 53.
    G. Benelli (2017). J. Clust. Sci. 28, 11–14.CrossRefGoogle Scholar
  54. 54.
    A. J. Kora, R. B. Sashidhar, and J. Arunachalam (2010). Carbohydr. Polym. 82, 670–679.CrossRefGoogle Scholar
  55. 55.
    A. Mehta, C. Sidhu, A. K. Pinnaka, and A. R. Choudhury (2014). PloS one 9, e98798.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Aparna Banerjee
    • 1
  • Urmi Halder
    • 1
  • Rajib Bandopadhyay
    • 1
  1. 1.UGC- Center of Advanced Study, Department of BotanyThe University of BurdwanGolapbag, BardhamanIndia

Personalised recommendations