Skip to main content
Log in

Preparations and Applications of Polysaccharide Based Green Synthesized Metal Nanoparticles: A State-of-the-Art

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Green chemistry is the torch bearing field of sustainable research where without use of any toxic chemicals, environment-friendly metal nanoparticles are produced. Advantages of green nanoparticle synthesis over chemical-based synthesis are its nearly zero toxicity with wider applications. As the multidrug resistant species begin to emerge, green synthesized nanoparticles have been arisen as a potent alternative of antimicrobials along with various other applications in diverse fields. The main hindrances behind green synthesis are choice of material and its availability. Because of cheaper cost, wide availability, enhanced effectivity and fewer side effects, polysaccharides have successfully replaced the position of chemical reducing agents in nanoparticle synthesis. Our present review focuses on preparation and applications of polysaccharide based metal nanoparticles; a state-of-the-art research with special emphasis on green synthesized silver nanoparticles as a potent source of emerging antimicrobial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(information source: Relecura)

Fig. 2

(information source: Relecura)

Similar content being viewed by others

References

  1. M. C. Daniel and D. Astruc (2004). J. Chem. Rev. 104, 293–346.

    Article  CAS  Google Scholar 

  2. A. Krolikowska, A. Kudelski, A. Michota, and J. Bukowska (2003). Surf. Sci. 532, 227–232.

    Article  Google Scholar 

  3. V. P. Zharov, J. W. Kim, D. T. Curiel, and M. Everts (2005). Nanotechnol. Biol. Med. 1, 326–345.

    Article  CAS  Google Scholar 

  4. A. Kumar, S. Mandal, P. R. Selvakannan, R. Parischa, A. B. Mandale, and M. Sastry (2003). Langmuir. 19, 6277–6282.

    Article  CAS  Google Scholar 

  5. K. Bogunia-Kubik and M. Sugisaka (2002). BioSystems. 65, 123–138.

    Article  CAS  Google Scholar 

  6. M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, and G. E. J. Poinern (2015). Materials 8, 7278–7308.

    Article  Google Scholar 

  7. M. Esparza-Soto and P. Westerhoff (2003). Water Res. 37, 2301–2310.

    Article  CAS  Google Scholar 

  8. J. C. Liu, G. Qin, P. Raveendran, and P. Ikushimax (2006). Chem. Eur. J. 12, 2131–2138.

    Article  CAS  Google Scholar 

  9. K. Balantrapu and D. V. Goia (2009). J. Mater. Res. 24, 2828–2836.

    Article  CAS  Google Scholar 

  10. M. A. Albrecht, C. W. Evans, and C. L. Raston (2006). Green Chem. 8, 417–432.

    Article  CAS  Google Scholar 

  11. T. Sun and K. Seff (1994). Chem. Rev. 94, 857–870.

    Article  CAS  Google Scholar 

  12. D. J. Xiong, M. L. Chen, and H. Li (2008) Chem. Commun. 7, 880–882.

    Article  Google Scholar 

  13. N. Duran, P. D. Marcato, O. L. Alves, G. I. H. De Souza, and E. J. Esposito (2005). J. Nanobiotechnology. 3, 8.

    Article  Google Scholar 

  14. S. Basu, S. Jana, S. Pande, and T. J. Pal (2008). J. Colloid Interface Sci. 321, 288–293.

    Article  CAS  Google Scholar 

  15. I. Brigger, C. Dubernet, and P. Couvreur (2004). P. Adv. Drug. Deliv. Rev. 54, 631–651.

    Article  Google Scholar 

  16. M. G. Guzman, J. Dille, and S. Godet (2008). World Acad. Sci. Eng. Technolo. 43, 357–364.

    Google Scholar 

  17. Z. Zhu, L. Kai, and Y. Wang (2006). Mater. Chem. Phys. 96, 447–453.

    Article  CAS  Google Scholar 

  18. I. Sondi and B. J. Salopek-Sondi (2004). J. Colloid Interface Sci. 275, 177–182.

    Article  CAS  Google Scholar 

  19. D. Yu and V. W. Yam (2004). J. Am. Chem. Soc. 126, 13200–13201.

    Article  CAS  Google Scholar 

  20. M. Harada, Y. Inada, and M. J. Nomura (2009). J. Colloid Interface Sci. 337, 427–438.

    Article  CAS  Google Scholar 

  21. S. T. Dubas and V. Pimpan (2008). Talanta 76, 29–33.

    Article  CAS  Google Scholar 

  22. A. Taleb, C. Petit, and M. P. Pileni (1997). Chem. Mater. 9, 950–959.

    Article  CAS  Google Scholar 

  23. A. Henglein (2001). Langmuir 17, 2329–2333.

    Article  CAS  Google Scholar 

  24. K. Esumi, T. Tano, K. Torigoe, and K. Meguro (1990). Chem. Mater. 2, 564–567.

    Article  CAS  Google Scholar 

  25. J. J. Zhu, S. W. Liu, O. Palchik, Y. Koltypin, and A. Gedanken (2000). Langmuir 16, 6396–6399.

    Article  CAS  Google Scholar 

  26. V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Ads. Colloid Interface Sci. 145, 83–96.

    Article  CAS  Google Scholar 

  27. J. Xie, J. Y. Lee, D. I. C. Wang, and Y. P. Ting (2007). ACS Nano. 1, 429–439.

    Article  CAS  Google Scholar 

  28. J. I. Hussain, S. Kumar, A. A. Hashmi, and Z. Khan (2011). Adv. Mat. Lett. 2, 188–194.

    Article  CAS  Google Scholar 

  29. Y. Park, Y. N. Hong, A. Weyers, Y. S. Kim, and R. J. Linhardt (2011). IET Nanobiotechnol. 5, 69–78.

    Article  CAS  Google Scholar 

  30. D. A. Geraldo, P. Needham, N. Chandia, R. Arratia-Perez, G. C. Mora, and N. A. Villagra (2016). Biointerface Res. Appl. Chem. 6, 1263–1271.

    Google Scholar 

  31. S. Singh, A. S. Vidyarthi, V. K. Nigam, and A. Dev (2014). Artif. Cells Nanomed. Biotechnol. 42, 6–12.

    Article  CAS  Google Scholar 

  32. P. Kanmani and S. T. Lim (2013). Process Biochem. 48, 1099–1106.

    Article  CAS  Google Scholar 

  33. R. Selvakumar, S. Aravindh, A. M. Ashok, and Y. L. Balachandran (2014). J. Exp. Nanosci. 9, 1075–1087.

    Article  CAS  Google Scholar 

  34. G. Sathiyanarayanan, G. S. Kiran, and J. Selvin (2013). Colloids Surf., B. 102, 13–20.

    Article  CAS  Google Scholar 

  35. V. Venkatpurwar and V. Pokharkar (2011). Mater. Lett. 65, 999–1002.

    Article  CAS  Google Scholar 

  36. A. Travan, C. Pelillo, I. Donati, E. Marsich, M. Benincasa, T. Scarpa, S. Semeraro, G. Turco, R. Gennaro, and S. Paoletti (2009). Biomacromolecules 10, 1429–1435.

    Article  CAS  Google Scholar 

  37. A. J. Kora, S. R. Beedu, and A. Jayaraman (2012). Org. Med. Chem. Lett. 2, 17.

    Article  Google Scholar 

  38. G. Li, Y. Li, Z. Wang, and H. Liu (2017). Mater. Chem. Phys. 187, 133–140.

    Article  CAS  Google Scholar 

  39. S. K. Srikar, D. D. Giri, D. B. Pal, P. K. Mishra, and S. N. Upadhyay (2016). Green and Sustainable Chemistry 6, 34.

    Article  Google Scholar 

  40. B. Le Ouay and F. Stellacci (2015). Nano Today 10, 339–354.

    Article  Google Scholar 

  41. S. Pal, Y. K. Tak, and J. M. Song (2007). Appl. Environ. Microbiol. 73, 1712–1720.

    Article  CAS  Google Scholar 

  42. A. Nanda and C. M. Raghavan (2014). Int. J. Chem. Tech. Res. 6, 2914–2919.

    Google Scholar 

  43. M. Rai, A. Yadav, and A. Gade (2009). Biotechnol. Adv. 27, 76–83.

    Article  CAS  Google Scholar 

  44. F. Baldi, S. Daniele, M. Gallo, S. Paganelli, D. Battistel, O. Piccolo, C. Faleri, A. M. Puglia, and G. Gallo (2016). BioMetals 29, 321–331.

    Article  CAS  Google Scholar 

  45. H. M. El-Rafie, M. H. El-Rafie, and M. K. Zahran (2013). Carbohydr. Polym. 96, 403–410.

    Article  CAS  Google Scholar 

  46. K. Murugan, A. Jaganathan, U. Suresh, R. Rajaganesh, S. Jayasanthini, A. Higuchi, S. Kumar, and G. Benelli (2017). J. Clust. Sci. 28, 529–550.

    Article  CAS  Google Scholar 

  47. G. Benelli, P. Roman, M. Filippo, P. Riccardo, and Marcello Nicoletti (2017). J. Clust. Sci. 28, 3–10.

    Article  CAS  Google Scholar 

  48. G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1–2.

    Article  CAS  Google Scholar 

  49. K. Murugan, A. Jaganathan, D. Devakumar, S. Udaiyan, R. Rajapandian, C. Balamurugan, J. Subramaniam, M. Paulpandi, C. Vadivalagan, P. Amuthavalli, L. Wang, J. Hwang, H. Wei, M. S. Alsalhi, S. Devanesan, S. Kumar, K. Pugazhendy, A. Higuchi, M. Nicoletti, and G. Benelli (2016). Ecotoxicol. Environ. Saf. 132, 318–328.

    Article  CAS  Google Scholar 

  50. R. Patel and S. Suresh (2006). J. Hazard. Mater. 137, 1729e1741.

    Article  Google Scholar 

  51. A. Safavi and S. Momeni (2012). J. Hazard. Mater. 201, 125e131.

    Google Scholar 

  52. W. Salem, D. R. Leitner, F. G. Zingl, G. Schratter, R. Prassl, W. Goessler, J. Reidl, and S. Schild (2015). Int. J. Med. Microbiol. 305, 85–95.

    Article  CAS  Google Scholar 

  53. G. Benelli (2017). J. Clust. Sci. 28, 11–14.

    Article  CAS  Google Scholar 

  54. A. J. Kora, R. B. Sashidhar, and J. Arunachalam (2010). Carbohydr. Polym. 82, 670–679.

    Article  CAS  Google Scholar 

  55. A. Mehta, C. Sidhu, A. K. Pinnaka, and A. R. Choudhury (2014). PloS one 9, e98798.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to UGC-Center of Advanced Study, Department of Botany, The University of Burdwan for pursuing research activities. Aparna Banerjee is also thankful to JRF (State Funded) for the financial assistance [Fc (Sc.)/RS/SF/BOT./2014-15/103 (3)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Bandopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Halder, U. & Bandopadhyay, R. Preparations and Applications of Polysaccharide Based Green Synthesized Metal Nanoparticles: A State-of-the-Art. J Clust Sci 28, 1803–1813 (2017). https://doi.org/10.1007/s10876-017-1219-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1219-8

Keywords

Navigation