Journal of Cluster Science

, Volume 28, Issue 4, pp 2185–2203 | Cite as

Three Luminescent Copper(I) Iodide Clusters with Phosphine Ligands: Synthesis, Structure Characterization, Properties and TD-DFT Calculations

  • Rong-Er Shou
  • Wen-Xiang Chai
  • Li Song
  • Lai-Shun Qin
  • Hong-Sheng Shi
  • Tian-Gen Wang
Original Paper


Three new luminescent copper(I) iodide complexes with their respective phosphine ligands, namely [Cu(μ 2-I)(o-Anisyl3P)]2·CH3CN (1), [Cu(μ 3-I)(m-Anisyl3P)]4 (2) and [Cu(μ 3-I)(p-Anisyl3P)]4 (3) (Anisyl = methoxyphenyl), have been synthesized by reacting CuI with the phosphine ligand in 1:1 molar ratio. All complexes were characterized by spectroscopic analysis (IR, UV–Vis), elemental analysis, and photoluminescence study. Single-crystal X-ray diffraction revealed that complex 1 is a di-nuclear cluster structure, while both of complex 2 and 3 are cubic-like tetra-nuclear cluster structures. All complexes exhibit intense blue-green luminescence in the solid state. The excited states of all complexes have been assigned as halide-to-ligand charge transfer state mixed with metal-to-ligand charge transfer character based on the TD-DFT calculations. The complex 2 and 3 are thermally stable according to thermogravimetric analysis so that they are suitable for applying in luminescent devices.


Copper(I) iodide clusters Phosphine ligand Crystal structure Phosphorescence TD-DFT 



The authors are grateful for financial support from the Science and Technology Project of Zhejiang Province (Project No. 2015C33047), and Zhejiang Provincial Natural Science Foundation of China (No. LY16B030009).

Supplementary material

10876_2017_1218_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2254 kb)


  1. 1.
    R. D. Costa, E. Ortí, H. J. Bolink, F. Monti, G. Accorsi, and N. Armaroli (2012). Angew. Chem. Int. Ed. 51, 8178.CrossRefGoogle Scholar
  2. 2.
    D. Volz, M. Wallesch, C. Flechon, M. Danz, A. Verma, J. M. Navarro, D. M. Zink, S. Brase, and T. Baumann (2015). Green Chem. 17, 1988.CrossRefGoogle Scholar
  3. 3.
    N. Robertson (2008). ChemSusChem 1, 977.CrossRefGoogle Scholar
  4. 4.
    S.-P. Luo, E. Mejía, A. Friedrich, A. Pazidis, H. Junge, A.-E. Surkus, R. Jackstell, S. Denurra, S. Gladiali, S. Lochbrunner, and M. Beller (2013). Angew. Chem. Int. Ed. 52, 419.CrossRefGoogle Scholar
  5. 5.
    T. Stoll, M. Gennari, J. Fortage, C. E. Castillo, M. Rebarz, M. Sliwa, O. Poizat, F. Odobel, A. Deronzier, and M.-N. Collomb (2014). Angew. Chem., 126, 1680.CrossRefGoogle Scholar
  6. 6.
    Y. Kuramochi, M. Kamiya, and H. Ishida (2014). Inorg. Chem. 53, 3326.CrossRefGoogle Scholar
  7. 7.
    Q. A. Zhao, F. Y. Li, and C. H. Huang (2010). Chem. Soc. Rev. 39, 3007.CrossRefGoogle Scholar
  8. 8.
    D. R. McMillin and K. M. McNett (1998). Chem. Rev. 98, 1201.CrossRefGoogle Scholar
  9. 9.
    Z. Wang, C. Zheng, W. Wang, C. Xu, B. Ji, and X. Zhang (2016). Inorg. Chem. 55, 2157.CrossRefGoogle Scholar
  10. 10.
    O. Green, B. A. Gandhi, and J. N. Burstyn (2009). Inorg. Chem. 48, 5704.CrossRefGoogle Scholar
  11. 11.
    N. Armaroli, G. Accorsi, F. Cardinali, and A. Listorti in V. Balzani and S. Campagna (eds.), Photochemistry and Photophysics of Coordination Compounds I, vol. 280 (Springer, Berlin, 2007), p. 69.CrossRefGoogle Scholar
  12. 12.
    D. G. Cuttell, S. M. Kuang, P. E. Fanwick, D. R. McMillin, and R. A. Walton (2002). J. Am. Chem. Soc. 124, 6.CrossRefGoogle Scholar
  13. 13.
    R. Czerwieniec, J. Yu, and H. Yersin (2011). Inorg. Chem. 50, 8293.CrossRefGoogle Scholar
  14. 14.
    Y. Sun, V. Lemaur, J. I. Beltrán, J. Cornil, J. Huang, J. Zhu, Y. Wang, R. Fröhlich, H. Wang, L. Jiang, and G. Zou (2016). Inorg. Chem. 55, 5845.CrossRefGoogle Scholar
  15. 15.
    Q. Zhang, X.-L. Chen, J. Chen, X.-Y. Wu, R. Yu, and C.-Z. Lu (2015). Dalton Trans. 44, 10022.CrossRefGoogle Scholar
  16. 16.
    W. Chai, M. Hong, L. Song, G. Jia, H. Shi, J. Guo, K. Shu, B. Guo, Y. Zhang, W. You, and X. Chen (2015). Inorg. Chem. 54, 4200.CrossRefGoogle Scholar
  17. 17.
    C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, and N. Robertson (2014). Inorg. Chem. 53, 10854.CrossRefGoogle Scholar
  18. 18.
    M. Hashimoto, S. Igawa, M. Yashima, I. Kawata, M. Hoshino, and M. Osawa (2011). J. Am. Chem. Soc. 133, 10348.CrossRefGoogle Scholar
  19. 19.
    V. W.-W. Yam, V. K.-M. Au, and S. Y.-L. Leung (2015). Chem. Rev. 115, 7589.CrossRefGoogle Scholar
  20. 20.
    P. C. Ford, E. Cariati, and J. Bourassa (1999). Chem. Rev. 99, 3625.CrossRefGoogle Scholar
  21. 21.
    S. Perruchas, C. Tard, X. F. Le Goff, A. Fargues, A. Garcia, S. Kahlal, J.-Y. Saillard, T. Gacoin, and J.-P. Boilot (2011). Inorg. Chem. 50, 10682.CrossRefGoogle Scholar
  22. 22.
    D. Volz, D. M. Zink, T. Bocksrocker, J. Friedrichs, M. Nieger, T. Baumann, U. Lemmer, and S. Bräse (2013). Chem. Mater. 25, 3414.CrossRefGoogle Scholar
  23. 23.
    D. M. Zink, M. Baechle, T. Baumann, M. Nieger, M. Kuehn, C. Wang, W. Klopper, U. Monkowius, T. Hofbeck, H. Yersin, and S. Braese (2013). Inorg. Chem. 52, 2292.CrossRefGoogle Scholar
  24. 24.
    M. Knorr, A. Khatyr, A. Dini Aleo, A. El Yaagoubi, C. Strohmann, M. M. Kubicki, Y. Rousselin, S. M. Aly, D. Fortin, A. Lapprand, and P. D. Harvey (2014). Cryst. Growth Des. 14, 5373.CrossRefGoogle Scholar
  25. 25.
    M.-W. Hong, L. Song, Y. Zhao, L.-S. Qin, C.-Y. Wang, H.-S. Shi, J.-Y. Guo, X.-D. Tao, K.-Y. Shu, and W.-X. Chai (2014). J. Clust. Sci. 25, 1627.CrossRefGoogle Scholar
  26. 26.
    X. Zhang, L. Song, M. Hong, H. Shi, K. Xu, Q. Lin, Y. Zhao, Y. Tian, J. Sun, K. Shu, and W. Chai (2014). Polyhedron 81, 687.CrossRefGoogle Scholar
  27. 27.
    Q. Benito, B. Baptiste, A. Polian, L. Delbes, L. Martinelli, T. Gacoin, J.-P. Boilot, and S. Perruchas (2015). Inorg. Chem. 54, 9821.CrossRefGoogle Scholar
  28. 28.
    Q. Benito, X. F. Le Goff, G. Nocton, A. Fargues, A. Garcia, A. Berhault, S. Kahlal, J. Y. Saillard, C. Martineau, J. Trebosc, T. Gacoin, J. P. Boilot, and S. Perruchas (2015). Inorg. Chem. 54, 4483.CrossRefGoogle Scholar
  29. 29.
    Y. Okano, H. Ohara, A. Kobayashi, M. Yoshida, and M. Kato (2016). Inorg. Chem. 55, 5227.CrossRefGoogle Scholar
  30. 30.
    M. Vitale and P. C. Ford (2001). Coord. Chem. Rev. 219–221, 3.CrossRefGoogle Scholar
  31. 31.
    E. Cariati, E. Lucenti, C. Botta, U. Giovanella, D. Marinotto, and S. Righetto (2016). Coord. Chem. Rev. 306, 566.CrossRefGoogle Scholar
  32. 32.
    H. Araki, K. Tsuge, Y. Sasaki, S. Ishizaka, and N. Kitamura (2005). Inorg. Chem. 44, 9667.CrossRefGoogle Scholar
  33. 33.
    L. Maini, D. Braga, P. P. Mazzeo, and B. Ventura (2012). Dalton Trans. 41, 531.CrossRefGoogle Scholar
  34. 34.
    Z. Liu, P. I. Djurovich, M. T. Whited, and M. E. Thompson (2012). Inorg. Chem. 51, 230.CrossRefGoogle Scholar
  35. 35.
    Z. W. Liu, M. F. Qayyum, C. Wu, M. T. Whited, P. I. Djurovich, K. O. Hodgson, B. Hedman, E. I. Solomon, and M. E. Thompson (2011). J. Am. Chem. Soc. 133, 3700.CrossRefGoogle Scholar
  36. 36.
    K. Tsuge, Y. Chishina, H. Hashiguchi, Y. Sasaki, M. Kato, S. Ishizaka, and N. Kitamura (2016). Coord. Chem. Rev. 306, 636.CrossRefGoogle Scholar
  37. 37.
    H. Hardt and A. Pierre (1977). Inorg. Chim. Acta 25, L59.CrossRefGoogle Scholar
  38. 38.
    S. Perruchas, X. F. L. Goff, S. Maron, I. Maurin, F. Guillen, A. Garcia, T. Gacoin, and J.-P. Boilot (2010). J. Am. Chem. Soc. 132, 10967.CrossRefGoogle Scholar
  39. 39.
    Q. Benito, X. F. Le Goff, S. Maron, A. Fargues, A. Garcia, C. Martineau, F. Taulelle, S. Kahlal, T. Gacoin, J.-P. Boilot, and S. Perruchas (2014). J. Am. Chem. Soc. 136, 11311.CrossRefGoogle Scholar
  40. 40.
    M. S. Deshmukh, A. Yadav, R. Pant, and R. Boomishankar (2015). Inorg. Chem. 54, 1337.CrossRefGoogle Scholar
  41. 41.
    S.-Z. Zhan, M. Li, X.-P. Zhou, J.-H. Wang, J.-R. Yang, and D. Li (2011). Chem. Commun. 47, 12441.CrossRefGoogle Scholar
  42. 42.
    L. L. Huo, W. X. Chai, L. Song, X. L. Zhang, Q. X. Tian, J. P. Liang, H. S. Shi, and K. Y. Shu (2013). Phosphorus Sulfur 188, 1340.CrossRefGoogle Scholar
  43. 43.
    Y. Zhao, W. Chai, L. Song, Y. Zhang, H. Shi, X. Tao, and K. Shu (2016). Phosphorus Sulfur 191, 1123.CrossRefGoogle Scholar
  44. 44.
    G. Sheldrick (2008). Acta Crystallogr. A 64, 112.CrossRefGoogle Scholar
  45. 45.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.CrossRefGoogle Scholar
  46. 46.
    G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009)Google Scholar
  47. 47.
    A. Márquez, E. Ávila, C. Urbaneja, E. Álvarez, P. Palma, and J. Cámpora (2015). Inorg. Chem. 54, 11007.CrossRefGoogle Scholar
  48. 48.
    W.-F. Fu, X. Gan, C.-M. Che, Q.-Y. Cao, Z.-Y. Zhou, and N. N.-Y. Zhu (2004). Chem. Eur. J. 10, 2228.CrossRefGoogle Scholar
  49. 49.
    W.-X. Chai, J. Lin, L. Song, L.-S. Qin, H.-S. Shi, J.-Y. Guo, and K.-Y. Shu (2012). Solid State Sci. 14, 1226.CrossRefGoogle Scholar
  50. 50.
    F. De Angelis, S. Fantacci, A. Sgamellotti, E. Cariati, R. Ugo, and P. C. Ford (2006). Inorg. Chem. 45, 10576.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Rong-Er Shou
    • 1
  • Wen-Xiang Chai
    • 1
  • Li Song
    • 2
  • Lai-Shun Qin
    • 1
  • Hong-Sheng Shi
    • 1
  • Tian-Gen Wang
    • 1
  1. 1.College of Materials Science and EngineeringChina Jiliang UniversityHangzhouPeople’s Republic of China
  2. 2.Department of ChemistryZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China

Personalised recommendations