Journal of Cluster Science

, Volume 28, Issue 4, pp 2239–2252 | Cite as

Synthesis, Structural Characterization, Hirshfeld Surface and Antioxidant Activity Analysis of a Novel Organic Cation Antimonate Complex

  • Ikram Lahbib
  • Arto Valkonen
  • Mohamed Rzaigui
  • Wajda Smirani
Original Paper


A new organic–inorganic hybrid material of formula (C10H15N2)7 Sb2Cl10 Sb2Cl9 (SbCl5)2 SbCl4 2Cl·7H2O was synthesized and characterized by an X-ray diffraction analysis. It crystallizes in the triclinic system with the P\(\bar{1}\) space group and the following unit cell parameters a = 11.8127(3) Å, b = 15.7557(4) Å, c = 35.4511(8) Å, α = 89.409(1)°, β = 84.04(1)°, γ = 71.116(1)°, Z = 2 and V = 6207.3(3) Å3. The examination of the structure shows that the two dimensional frameworks are produced by O–H Cl, N–H⋯Cl and N–H⋯O hydrogen bonding. In addition, the most important features of crystal packing and intermolecular interactions in the title complex were quantified via Hirshfeld surface analysis. Differential scanning calorimetry has revealed a dehydration phenomenon at around 348 K. The investigation of the antioxidant activity of the title compound was carried out using the 2,2-diphenyl-1-picrylhydrazyl and ferrous iron chelating methods.


Antimonates Crystal structure Hirshfeld surface Photoluminescence Antioxidant activity 



The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.

Supplementary material

10876_2017_1217_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1765 kb)


  1. 1.
    I. Abdul Razak, S. S. Sundara Raj, H. K. Fun, B. M. Yamin, and N. Hashim (2000). Acta Crystallogr. C. 56, 664.CrossRefGoogle Scholar
  2. 2.
    C. Shen Tu, H. Y. Li, X. J. Ma, W. Huang, and Z. M. Jin (2008). Acta Crystallogr. E. 64, 146.CrossRefGoogle Scholar
  3. 3.
    L. J. Cui, H. J. Xu, and K. J. Pan (2009). Acta Crystallogr. E. 65, 674.CrossRefGoogle Scholar
  4. 4.
    S. Chaabouni, J. M. Savariault, and A. Ben Salah (2004). J. Chem. Crystallogr 34, 223.CrossRefGoogle Scholar
  5. 5.
    M. Bujak and J. Zaleski (1998). Acta Crystallogr. C. 54, 1773.CrossRefGoogle Scholar
  6. 6.
    B. Bednarska Bolek, R. Jakubas, G. Bator, and J. Baran (2002). J. Mol. Struct 614, 151.CrossRefGoogle Scholar
  7. 7.
    B. Bednarska Bolek, Z. Ciunik, R. Jakubas, G. Bator, and P. Ciapala (2002). J. Phys. Chem. Solids 65, 507.CrossRefGoogle Scholar
  8. 8.
    M. Wojtaṥ and R. Jakubas (2004). J. Phys. Condens. Matter. 16, 7521.CrossRefGoogle Scholar
  9. 9.
    B. Kulicha, R. Jakubas, A. Pietraszko, G. Bator, and J. Baran (2004). Solid State Sci. 6, 1273.CrossRefGoogle Scholar
  10. 10.
    S. Chaabouni, S. Kamoun, A. Daoud, and T. Jouini (1997). J. Chem. Crystallogr. 27, 401.CrossRefGoogle Scholar
  11. 11.
    X. Q. Fu (2010). Acta Crystallogr. E. 66, 736.CrossRefGoogle Scholar
  12. 12.
    M. Bujak and J. Zaleski (2000). J. Mol. Struct. 555, 179.CrossRefGoogle Scholar
  13. 13.
    L. Sobczyk, R. Jakubas, and J. Zaleski (1997). Pol. J. Chem. 71, 265.Google Scholar
  14. 14.
    G. Bator, J. Baran, R. Jakubas, and L. Sobczyk (1998). J. Mol. Struct. 450, 89.CrossRefGoogle Scholar
  15. 15.
    R. Jakubas, G. Bator, and Z. Ciunik (2003). Ferroelectrics 295, 3.Google Scholar
  16. 16.
    S. Chaabouni, J. M. Savariault, and A. Ben Salah (2004). J. Chem. Crystallogr 34, 661.CrossRefGoogle Scholar
  17. 17.
    S. Teimoori, K. Panjamurthy, K. Vinaya, D. S. Prasanna, S. C. Raghavan, and K. S. Rangappa (2011). J. Cancer Ther. 4, 507.CrossRefGoogle Scholar
  18. 18.
    M. S. R. Murty, K. R. Ram, B. Ramalingeswara Rao, R. Venkateswara Rao, M. Rao Katiki, J. Venkateswara Rao, R. Pamanji, and L. R. Velatooru (2014). Med. Chem. Res. 23, 1661.CrossRefGoogle Scholar
  19. 19.
    G. Kesan, Ö. Baglayan, C. Parlak, Ö. Alver, and M. Senyel (2012). Spectrochim. Acta. Part A. 88, 144.CrossRefGoogle Scholar
  20. 20.
    F. J. Guo, J. Sun, L. L. Gao, X. Y. Wang, Y. Zhang, Sh S Qian, and H. L. Zhu (2015). Bioorg. Med. Chem. Lett. 25, 1067.CrossRefGoogle Scholar
  21. 21.
    G. F. Eilon, J. Gu, L. M. Slater, K. Hara, and J. W. Jacobs (2000). Cancer Chemother. Pharmacol. 3, 183.Google Scholar
  22. 22.
    R. Gillet, P. Jeannesson, H. Sefraoui, M. Arnould-GueArin, L. S. Kirkiacharian, J. C. Jardillier, and F. Pieri (1998). Cancer Chemother. Pharmacol. 41, 252.CrossRefGoogle Scholar
  23. 23.
    C. C. Guo, R. B. Tong, and K. L. Li (2004). Bioorg. Med. Chem. 9, 2469.CrossRefGoogle Scholar
  24. 24.
    G. M. Sheldrick SHELXL97, Program for Crystal Structure Refinement (University of Gottingen, Gottingen, 1997).Google Scholar
  25. 25.
    K. Brandenburg (1998). Diamond Version 2.0, Impact GbR Bonn., Germany.Google Scholar
  26. 26.
    L. Mhamdi, K. Saïd, Y. Moussaoui, and R. Ben Salem (2013). J. Soc. Chim. Tunisia 15, 149.Google Scholar
  27. 27.
    N. Singh and P. S. Rajini (2004). Food Chem. 85, 611.CrossRefGoogle Scholar
  28. 28.
    L. Z. Chen (2009). Acta Crystallogr. E. 65, 689.CrossRefGoogle Scholar
  29. 29.
    L. Z. Chen (2009). Acta Crystallogr. E. 65, 683.CrossRefGoogle Scholar
  30. 30.
    S. Soudani, M. Zeller, C. Jelsch, F. Lefebvre, and C. Ben Nasr (2016). Solid State Sci. 58, 94.CrossRefGoogle Scholar
  31. 31.
    M. L. Liu (2011). Acta Crystallogr. E. 67, 1812.CrossRefGoogle Scholar
  32. 32.
    Q. Xu (2012). Acta Crystallogr. E. 68, 438.CrossRefGoogle Scholar
  33. 33.
    A. Derwahl, W. T. Robinson, and D. A. House (1996). Inorg. Chim. Acta. 247, 19.CrossRefGoogle Scholar
  34. 34.
    N. Weslati, I. Chaabane, A. Bulou, and F. Hlel (2014). Physica B. 441, 42.CrossRefGoogle Scholar
  35. 35.
    N. Weslati, I. Chaabane, and F. Hlel (2014). Vib. Spectrosc. 73, 116.CrossRefGoogle Scholar
  36. 36.
    G. Bator, R. Jakubas, and J. Baran (2007). Vib. Spectrosc. 45, 36.CrossRefGoogle Scholar
  37. 37.
    L. Li and G. X. Wang (2010). Acta Crystallogr. E. 66, 1629.CrossRefGoogle Scholar
  38. 38.
    B. Zarychta, M. Bujak, and J. Zaleski (2007). Z. Naturforsch. 62, 44.CrossRefGoogle Scholar
  39. 39.
    M. Bujak and J. Zaleski (2004). J. Solid State Chem. 177, 3202.CrossRefGoogle Scholar
  40. 40.
    M. Bujak and R. J. Angel (2005). J. Solid State Chem. 178, 2237.CrossRefGoogle Scholar
  41. 41.
    D. Cremer and J. A. Pople (1975). J. Am. Chem. Soc. 97, 1354.CrossRefGoogle Scholar
  42. 42.
    J. J. McKinnon, M. A. Spackman, and A. S. Mitchell (2004). Acta Crystallogr. B. 60, 627.CrossRefGoogle Scholar
  43. 43.
    M. A. Spackman and J. J. McKinnon (2002). Fingerprinting intermolecular interactions in molecular crystals. Cryst. Eng. Comm. 4, 378.CrossRefGoogle Scholar
  44. 44.
    G. Blasse (1988). Prog. Solid State Chem. 18, 79.CrossRefGoogle Scholar
  45. 45.
    F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Huettner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatuere, R. T. Phillips, and R. H. Friend (2014). J. Phys. Chem. Lett. 5, 1421.CrossRefGoogle Scholar
  46. 46.
    C. Yang, M. S. Wang, Z. N. Xu, F. Chen, G. N. Liu, G. Xu, G. C. Guo, and J. S. Huang (2010). Inorg. Chem. Commun. 13, 326.CrossRefGoogle Scholar
  47. 47.
    M. Essid, M. Rzaigui, and H. Marouani (2016). J. Mol. Struct. 1117, 257–264.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ikram Lahbib
    • 1
  • Arto Valkonen
    • 2
  • Mohamed Rzaigui
    • 1
  • Wajda Smirani
    • 1
  1. 1.Laboratoire de Chimie des Matériaux, Faculté des Sciences of BizerteUniversité de CarthageZarzounaTunisia
  2. 2.Department of Chemistry and BioengineeringTampere University of TechnologyTampereFinland

Personalised recommendations