Advertisement

Journal of Cluster Science

, Volume 28, Issue 4, pp 2253–2267 | Cite as

Synthesis and Characterization of Ni-doped TiO2 Nanostructures as an Active Self-cleaning Cover on Floor-Tile Surface

  • Mehrnoosh Hasan Shahriari
  • Maryam Hosseini-Zori
Original Paper
  • 177 Downloads

Abstract

In this work, Ni doped titanium dioxide (Ni-doped TiO2) nanostructures were synthesized by reverse microemulsion method. The effect of calcination temperature on the purity and morphology of Ni-doped TiO2 nanostructures was investigated. The products were characterized by various analyses such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and diffuse reflectance spectroscopy. The existence of Ni as dopants was confirmed by decreasing in band gap of TiO2. The pH influence to photoactivity of the as-prepared Ni-doped TiO2 was investigated through decomposition of Acid Red 1 (A.R.1.), Reactive Blue 21 (R.A.21.) and Acid Blue 74 (A.B.74.) as organic pollutants. The kinetic studies revealed that reactions follow the improved Langmuir–Hinshelwood model. The hydrophilicity, surface and interfacial interactions of the products on the floor tile was investigated by wetting experiments and a sessile drop technique at room temperature. The results confirmed that Ni-doped TiO2 has hydrophilicity property, so it can be used as an effective photocatalytic cover for preparation of self-cleaning surfaces under UV irradiation and visible light.

Keywords

Photocatalyst Reverse microemulsion Ni-doped TiO2 Nanostructure Hydrophilicity 

Notes

Acknowledgements

The authors are grateful to Council of Institute for Colorants, Paint and Coatings-ICST, Tehran, Iran for providing financial support to undertake this work.

References

  1. 1.
    F. Motahari, M. R. Mozdianfard, F. Soofivand, and M. Salavati-Niasari (2014). RSC Adv. 4, 53.CrossRefGoogle Scholar
  2. 2.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A. Y. Faal, and S. Bagheri (2016). Adv. Powder Technol. 27, 5.CrossRefGoogle Scholar
  3. 3.
    F. Soofivand, F. Mohandes, and M. Salavati-Niasari (2013). Mater. Res. Bull. 48, 6.CrossRefGoogle Scholar
  4. 4.
    F. Soofivand and M. Salavati-Niasari (2015). RSC Adv. 5, 79.CrossRefGoogle Scholar
  5. 5.
    M. Hosseini (2011). Zori. J. Inorg. Organomet. Polym. Mater. 21, 1.CrossRefGoogle Scholar
  6. 6.
    M. Hosseini Zori and A. Soleimani-Gorgani (2012). J. Eur. Ceram. Soc. 32, 16.CrossRefGoogle Scholar
  7. 7.
    M. Hosseini-Zori, Study on the Hydrophobized Changes in Wettability of Sol–Gel Synthesized Nano Titanium Dioxide Films, Advanced Materials Research (Trans Tech Publications, 2014), pp. 362–365.Google Scholar
  8. 8.
    H. Wang, Z. Tang, L. Sun, Y. He, Y. Wu, and Z. Li (2009). Rare Met. 28, 3.Google Scholar
  9. 9.
    A. Fujishima (1972). Nature 238, 37.CrossRefGoogle Scholar
  10. 10.
    S. Valencia, J. M. Marín, and G. Restrepo (2010). Open Mater. Sci. J. 4, 1.Google Scholar
  11. 11.
    A. A. Murashkina, P. D. Murzin, A. V. Rudakova, V. K. Ryabchuk, A. V. Emeline, and D. W. Bahnemann (2015). J. Phys. Chem. C 119, 44.CrossRefGoogle Scholar
  12. 12.
    B. Roose, S. Pathak, and U. Steiner (2015). Chem. Soc. Rev. 44, 22.CrossRefGoogle Scholar
  13. 13.
    N. S. Leyland, J. Podporska-Carroll, J. Browne, S. J. Hinder, B. Quilty, and S. C. Pillai (2016). Sci. Rep. 6, 24770.CrossRefGoogle Scholar
  14. 14.
    J. B. Bellam, M. A. Ruiz-Preciado, M. Edely, J. Szade, A. Jouanneaux, and A. H. Kassiba (2015). RSC Adv. 5, 14.CrossRefGoogle Scholar
  15. 15.
    B. Yacoubi, L. Samet, J. Bennaceur, A. Lamouchi, and R. Chtourou (2015). Mater. Sci. Semicond. Process. 30, 361.CrossRefGoogle Scholar
  16. 16.
    S. G. Shin, C. W. Bark, and H. W. Choi (2014). Mol. Cryst. Liq. Cryst. 600, 1.CrossRefGoogle Scholar
  17. 17.
    T. S. Eom, K. H. Kim, C. W. Bark, and H. W. Choi (2014). Mol. Cryst. Liq. Cryst. 600, 1.CrossRefGoogle Scholar
  18. 18.
    A. Shalan and M. Rashad (2013). Appl. Surf. Sci. 283, 975.CrossRefGoogle Scholar
  19. 19.
    A. Malik, S. Hameed, M. Siddiqui, M. Haque, K. Umar, A. Khan, and M. Muneer (2014). J. Mater. Eng. Perform. 23, 9.Google Scholar
  20. 20.
    P. Archana, E. N. Kumar, C. Vijila, S. Ramakrishna, M. Yusoff, and R. Jose (2013). Dalton Trans. 42, 4.CrossRefGoogle Scholar
  21. 21.
    J. Navas, C. Fernández‐Lorenzo, T. Aguilar, R. Alcántara, and J. Martín‐Calleja (2012). Phys. Status Solidi (a) 209(2), 378.CrossRefGoogle Scholar
  22. 22.
    A. G. Niaki, A. Bakhshayesh, and M. Mohammadi (2014). Sol. Energy 103, 210.CrossRefGoogle Scholar
  23. 23.
    Z. Ali, K. H. Park, I. Shakir, and D. J. Kang (2015). Electrochim. Acta 161, 329.CrossRefGoogle Scholar
  24. 24.
    S. Chen, J. Lin, and J. Wu (2014). J. Mater. Sci. Mater. Electron. 25, 5.Google Scholar
  25. 25.
    S. Chen, J. Lin, and J. Wu (2014). Appl. Surf. Sci. 293, 202.CrossRefGoogle Scholar
  26. 26.
    P. Archana, A. Gupta, M. M. Yusoff, and R. Jose (2014). Appl. Phys. Lett. 105, 15.CrossRefGoogle Scholar
  27. 27.
    M. Dürr, S. Rosselli, A. Yasuda, and G. Nelles (2006). J. Phys. Chem. B 110, 43.Google Scholar
  28. 28.
    L. Long, L. Wu, X. Yang, and X. Li (2014). J. Mater. Sci. Technol. 30, 8.CrossRefGoogle Scholar
  29. 29.
    S. G. Kim, M. J. Ju, I. T. Choi, W. S. Choi, H.-J. Choi, J.-B. Baek, and H. K. Kim (2013). RSC Adv. 3, 37.Google Scholar
  30. 30.
    J. Luo, J. Zhou, H. Guo, W. Yang, B. Liao, W. Shi, and Y. Chen (2014). RSC Adv. 4, 99.Google Scholar
  31. 31.
    M.-C. Kao, H.-Z. Chen, and S.-L. Young (2013). Jpn. J. Appl. Phys. 52, 1S.CrossRefGoogle Scholar
  32. 32.
    K. Lee and P. Schmuki, Electrochemistry Communications 25, (2012).Google Scholar
  33. 33.
    Z. Tong, T. Peng, W. Sun, W. Liu, S. Guo, and X.-Z. Zhao (2014). J. Phys. Chem. C 118, 30.Google Scholar
  34. 34.
    J. H. Yang, K. H. Kim, C. W. Bark, and H. W. Choi (2014). Mol. Cryst. Liq. Cryst. 598, 1.CrossRefGoogle Scholar
  35. 35.
    J. Tauc, R. Grigorovici, and A. Vancu (1966). Phys. Status Solidi (b) 15(2).Google Scholar
  36. 36.
    K. M. Reddy, S. V. Manorama, and A. R. Reddy (2003). Mater. Chem. Phys. 78, 1.CrossRefGoogle Scholar
  37. 37.
    K. Salehi, B. Shahmoradi, A. Bahmani, M. Pirsaheb, and H. Shivaraju (2016). Desalin. Water Treat. 57, 25256.CrossRefGoogle Scholar
  38. 38.
    J.-M. Herrmann (1999). Catal. Today 53, 1.CrossRefGoogle Scholar
  39. 39.
    S. J. Darzi, A. Mahjoub, and S. Sarfi (2012). Iran. J. Mater. Sci. Eng 9, 3.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mehrnoosh Hasan Shahriari
    • 1
  • Maryam Hosseini-Zori
    • 2
  1. 1.Research Institute of Dental Sciences, Dental Research Center, Dental SchoolShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Department of Inorganic Pigments and GlazesInstitute for Color Science and Technology (ICST)TehranIran

Personalised recommendations