Journal of Cluster Science

, Volume 28, Issue 4, pp 2167–2183 | Cite as

Metal Oxide Nanoparticles Assisted Controlled Release of Synthetic Insect Attractant for Effective and Sustainable Trapping of Fruit Flies

  • G. Dharanivasan
  • S. Sithanantham
  • M. Kannan
  • S. Chitra
  • K. Kathiravan
  • S. Janarthanan
Original Paper
  • 143 Downloads

Abstract

The use of attractants in mass insect pest trapping is the emerging approach in eco-friendly pest management. The rate of release and stability of attractants are important factors in determining the cost of the trap dispenser system. Nano-materials are widely used for sustained release of bioactive compounds in bio-medical sciences. In the present study, it was explored the scope of using metal oxide nanoparticles (SiO2, TiO2, and ZnO NPs) to regulate discharge of methyl eugenol (ME) from lure dispensers. The discharge of ME with various concentrations of nanomaterials was investigated at different temperatures. Among these, maximum controlled release of ME was found at 10−5 dilution at temperature between 30 and 35 °C. The interaction between metal oxides NPs and ME was investigated through FT-IR and DLS analyses. The results revealed a weak interaction apparently due to the presence of van der Waals forces. The metal oxide NPs assisted controlled release of ME was investigated in the mango orchards. Among the samples, ME with TiO2 NPs (dilution: 10−5) showed a higher number of fruit fly catches than the others for up to 12 weeks. These findings provide an evidence for the hypothesis of controlled release or discharge of the insect attractant for trapping of fruit flies achieved using metal oxide nanoparticles.

Keywords

Methyl eugenol Metal oxide nanoparticles Lure dispenser Effective discharge Fruit flies 

Notes

Acknowledgements

One of the authors (SJ) acknowledges the financial assistance received from National Centre for Nanoscience and Nanotechnology, University of Madras to carry out the programme. We thank to Dr. G. Harichandran and Mr. P. Thangamuniyandi, Department of Polymer Science, University of Madras for their assistance in metal oxide nanoparticles preparation. All authors are gratefully thanked Mr. Anirudha Karati, Central Electron Microscopy Facility, Department of Chemistry, Indian Institute of Technology, Madras for HR-TEM analysis.

Compliance with Ethical Standards

Conflict of interest

We declare that we have no conflict of interest.

References

  1. 1.
    S. Sithanantham, Proceedings of International Symposium on Insect Pest Management (St. Xavier’s College, Palayamkottai, 2011).Google Scholar
  2. 2.
    G. Benelli, K. M. Daane, A. Canale, C. Y. Niu, R. H. Messing, and R. I. Vargas (2014). J. Pest Sci. doi: 10.1007/s10340-014-0577-3.Google Scholar
  3. 3.
    G. Benelli, G. Giunti, A. Canale, and R. H. Messing (2014). Appl. Entomol. Zool. doi: 10.1007/s13355-014-0276-9.Google Scholar
  4. 4.
    R. I. Vargas, T. E. Shelly, L. Leblanc, and J. C. Pinero (2010). Vitam. Horm. doi: 10.1016/S0083-6729(10)83023-7.Google Scholar
  5. 5.
    W. J. Lyman, Handbook of chemical property estimation methods (American Chemical Society, Washington, 1990), pp. 4–5.Google Scholar
  6. 6.
    HSDB. Eugenol-National Library of Medicine, TOXNET. (2006). http://toxnet.nlm.nih.gov.
  7. 7.
    T. N. Shaver, D. L. Bull (1980). Bull. Environ. Contam. Toxicol. http://ncbi.nlm.nih.gov/pubmed/7378606.
  8. 8.
    W. M. Meylan and P. H. Howard (1993). Chemosphere. doi: 10.1016/0045-6535(93)90355-9.Google Scholar
  9. 9.
    A. Bhattacharyya, A. Bhaumik, P. Usha Rani, M. Suvra, and T. T. Epidi (2010). Afr. J. Biotechnol. doi: 10.1155/2015/758132.Google Scholar
  10. 10.
    H. Guan, D. Chi, J. Yu, and X. Li (2008). Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2008.06.008.Google Scholar
  11. 11.
    F. L. Yang, X. G. Li, F. Zhu, and C. L. Lei (2009). J. Agric. Food Chem. doi: 10.1021/jf9023118.Google Scholar
  12. 12.
    G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. doi: 10.1007/s10876-016-1131-7.Google Scholar
  13. 13.
    T. K. Barik, B. Sahu, and V. Swain (2008). Parasitol. Res. doi: 10.1007/s00436-008-0975-7.Google Scholar
  14. 14.
    M. Rai and A. Ingle (2012). Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-3969-4.Google Scholar
  15. 15.
    M. I. Setyawati, C. Y. Tay, and D. T. Leong (2015). Small. doi: 10.1002/smll.201403232.Google Scholar
  16. 16.
    J. F. Chen, R. Liu, D. Cao, J. Shen Yun, J. Wang, L. Shao, and W. L. Zhou (2004). MRS Proc. doi: 10.1557/proc-823-W4.16.Google Scholar
  17. 17.
    W. A. Churaman, L. Currano (2007). http://purl.access.gpo.gov/gpo/lps109937.
  18. 18.
    S. Angelos, M. Liong, E. Choi, and J. I. Zink (2008). Chem. Eng. J. doi: 10.1016/j.cej.2007.07.074.Google Scholar
  19. 19.
    F. Liu, L. X. Wen, Z. Z. Li, W. Yu, H. Y. Sun, and J. F. Chen (2006). Mater. Res. Bull. doi: 10.1016/j.materresbull.2006.04.014.Google Scholar
  20. 20.
    Z. Z. Li, S. A. Xu, L. X. Wen, F. Liu, A. Q. Liu, Q. Wang, H. Y. Sun, W. Yu, and J. F. Chen (2006). J. Control Release. doi: 10.1016/j.jconrel.2005.10.020.Google Scholar
  21. 21.
    S. M. Gupta and M. Tripathi (2011). Chin. Sci. Bull. doi: 10.1007/s11434-011-4476-1.Google Scholar
  22. 22.
    A. Kołodziejczak-Radzimska and T. Jesionowsk (2014). Materials. doi: 10.3390/ma7042833.Google Scholar
  23. 23.
    T. G. Smijs and S. Pavel (2011). Nanotechnol. Sci. Appl. doi: 10.2147/NSA.S19419.Google Scholar
  24. 24.
    G. Scrinis and K. Lyons (2007). Int. J. Sociol. Food Agric. 15, 22–44.Google Scholar
  25. 25.
    M. D. Nuruzzaman, M. M. Rahman, Y. Liu, and R. Naidu (2016). J. Agric. Food Chem. doi: 10.1021/acs.jafc.5b05214.Google Scholar
  26. 26.
    A. Tiboni, M. D. A. Coracini, E. R. Lima, P. H. G. Zarbin, and A. J. G. Zarbin (2008). Braz. Chem. Soc. doi: 10.1590/S0103-0532008000800026.Google Scholar
  27. 27.
    D. Bhagat, S. K. Samanta, and S. Bhattacharya (2013). Sci. Rep. doi: 10.1038/srep01294.Google Scholar
  28. 28.
    H. Benhebal, M. Chaib, T. Salomon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, and B. Heinrichs (2013). Alex. Eng. J. doi: 10.1016/j.aej.2013.04.005.Google Scholar
  29. 29.
    G. Benelli (2017). J. Clust. Sci. doi: 10.1007/s10876-016-1143-3.Google Scholar
  30. 30.
    Q. Xie, Z. Dai, J. Liang, L. Xu, W. Yu, and Y. Qian (2005). Solid State Commun. doi: 10.1016/j.ssc.2005.07.023.Google Scholar
  31. 31.
    M. Bitenc and Z. C. Orel (2009). Mater. Res. Bull. doi: 10.1016/j.materresbull.2008.05.005.Google Scholar
  32. 32.
    G. Kiran, R. P. Singh, P. Ashutosh, and P. Anjana (2013). J. Nanotechnol. doi: 10.3762/bjnano.4.40.Google Scholar
  33. 33.
    A. Ambrosone, M. R. Scotto di Vettimo, M. A. Malvindi, M. Roopin, O. Levy, V. Marchesano, P. P. Pompa, C. Tortiglione, and A. Tino (2014). Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2014.00037.Google Scholar
  34. 34.
    W. J. Huang, H. H. Tsai, and W. F. Lee (2010). Polym. Compos. doi: 10.1002/pc.20961.Google Scholar
  35. 35.
    J. W. Kim, L. U. Kim, and C. K. Kim (2007). Biomacromolecules. doi: 10.1021/bm060560b.Google Scholar
  36. 36.
    E. R. Martins, V. W. D. Casali, L. C. A. Barbosa, and F. Carazza (1997). J. Braz. Chem. Soc. doi: 10.1590/S0103-50531997000100006.Google Scholar
  37. 37.
    W. M. Tan, N. Hou, S. Pang, X. F. Zhu, Z. H. Li, L. X. Wen, and L. S. Duana (2012). Pest Manag. Sci. doi: 10.1002/ps.2288.Google Scholar
  38. 38.
    K. Shameli, M. B. Ahmad, S. D. Jazayeri, S. Sedaghat, P. Shabanzadeh, H. Jahangirian, M. Mahdavi, and Y. Abdollahi (2012). Int. J. Mol. Sci. doi: 10.3390/ijms13066639.Google Scholar
  39. 39.
    J. Han, Y. Liu, N. Singhal, L. Wang, and W. Gao (2012). Chem. Eng. J. doi: 10.1016/j.cej.2012.09.066.Google Scholar
  40. 40.
    R. J. Barnes, R. Molina, J. Xu, P. J. Dobson, and I. P. Thompson (2013). J. Nanopart. Res. doi: 10.1007/s11051-013-1432-9.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • G. Dharanivasan
    • 1
    • 2
  • S. Sithanantham
    • 3
  • M. Kannan
    • 4
  • S. Chitra
    • 5
  • K. Kathiravan
    • 1
  • S. Janarthanan
    • 5
  1. 1.Department of BiotechnologyUniversity of MadrasChennaiIndia
  2. 2.Department of BiotechnologyIndian Institute of Technology MadrasChennaiIndia
  3. 3.Sun Agro Biotech Research CentrePorur, ChennaiIndia
  4. 4.Department of Nanosciences and TechnologyTamil Nadu Agricultural UniversityCoimbatoreIndia
  5. 5.Department of ZoologyUniversity of MadrasChennaiIndia

Personalised recommendations