Journal of Cluster Science

, Volume 28, Issue 4, pp 2157–2165 | Cite as

Na4Ca[B4O5(OH)4]3·14H2O: An Acentric Supramolecular Framework Borate Based on [B4O5(OH)4]2− Cluster Units

Original Paper

Abstract

A new mixed-metal tetraborate, Na4Ca[B4O5(OH)4]3·14H2O (1), with an acentric structure has been synthesized under mild solvothermal conditions and characterized by powder X-ray diffraction, thermogravimetric analysis, IR and UV–Vis spectroscopy, nonlinear optical determination and single crystal X-ray diffraction. 1 crystallizes in hexagonal space group P-62c (No. 190) with the unit cell parameters: a = 11.2896 (6) Å, c = 15.8360 (9) Å, V = 1748.0 (2) Å3, and Z = 1. The compound features two types of layered networks, a borate network with kgm topology and a Na–O–Ca network with hcb topology, which are alternately arranged generating a 3D framework with straight channels. Powder second-harmonic-generating measurement indicates that compound 1 presents a SHG response of ~0.9 times that of KDP (KH2PO4), with the UV cut-off edge below 240 nm, making 1 a potential UV NLO material.

Keywords

Borate Oxoboron cluster Acentric structure Nonliner optical property 

Notes

Acknowledgments

This work was supported by the NSFC (Nos. 21571016 and 91122028), the NSFC for Distinguished Young Scholars (No. 20725101).

References

  1. 1.
    P. C. Burns, J. D. Grice, and F. C. Hawthorne (1995). Can. Mineral. 33, 1131.Google Scholar
  2. 2.
    J. D. Grice, P. C. Burns, and F. C. Hawthorne (1999). Can. Mineral. 37, 731.Google Scholar
  3. 3.
    C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu (1995). Nature 373, 322.CrossRefGoogle Scholar
  4. 4.
    G. Heller (1986). Top. Curr. Chem. 131, 39.CrossRefGoogle Scholar
  5. 5.
    Q. Wei, J. J. Wang, C. He, J. W. Cheng, and G. Y. Yang (2016). Chem. Eur. J. 22, 10759.CrossRefGoogle Scholar
  6. 6.
    P. Becker (1998). Adv. Mater. 10, 979.CrossRefGoogle Scholar
  7. 7.
    G. M. Wang, Y. Q. Sun, and G. Y. Yang (2004). J. Solid State Chem. 177, 4648.CrossRefGoogle Scholar
  8. 8.
    C. Y. Pan, L. J. Zhong, J. Lu, D. G. Li, F. H. Zhao, and H. M. Yang (2014). Z. Anorg. Allg. Chem. 640, 352.CrossRefGoogle Scholar
  9. 9.
    C. Y. Pan, G. M. Wang, S. T. Zheng, and G. Y. Yang (2007). Z. Anorg. Allg. Chem. 633, 336.CrossRefGoogle Scholar
  10. 10.
    M. Z. Visi, C. B. Knobler, J. J. Owen, M. I. Khan, and D. M. Schubert (2006). Cryst. Growth. Des. 6, 538.CrossRefGoogle Scholar
  11. 11.
    D. M. Schubert, M. Z. Visi, and C. B. Knobler (2000). Inorg. Chem. 39, 2250.CrossRefGoogle Scholar
  12. 12.
    Z. H. Liu, L. Q. Li, and W. J. Zhang (2006). Inorg. Chem. 45, 1430.CrossRefGoogle Scholar
  13. 13.
    M. A. Beckett (2016). Coord. Chem. Rev. 323, 2.CrossRefGoogle Scholar
  14. 14.
    Y. Wang and S. Pan (2016). Coord. Chem. Rev. 323, 15.CrossRefGoogle Scholar
  15. 15.
    M. A. Silver and T. E. Albrecht-Schmitt (2016). Coord. Chem. Rev. 323, 36.CrossRefGoogle Scholar
  16. 16.
    G. Aka and A. Brenier (2003). Opt. Mater. 22, 89.CrossRefGoogle Scholar
  17. 17.
    W. W. Zhao, S. L. Pan, Y. J. Wang, Z. H. Yang, X. Wang, and J. Han (2012). J. Solid State Chem. 195, 73.CrossRefGoogle Scholar
  18. 18.
    S. C. Wang, N. Ye, W. Li, and D. Zhao (2010). J. Am. Chem. Soc. 132, 8779.CrossRefGoogle Scholar
  19. 19.
    H. W. Huang, J. Y. Yao, Z. S. Lin, X. Y. Wang, R. He, W. J. Yao, N. X. Zhai, and C. T. Chen (2011). Angew. Chem. Int. Ed. 50, 9141.CrossRefGoogle Scholar
  20. 20.
    C. Chen, B. Wu, A. Jiang, and G. You (1985). Sci. Sin. Ser. B (Engl. Ed.) 28, 235.Google Scholar
  21. 21.
    C. T. Chen, Y. C. Wu, A. D. Jiang, G. M. You, R. K. Li, and S. J. Lin (1989). J. Opt. Soc. Am. B. 6, 616.CrossRefGoogle Scholar
  22. 22.
    Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai (1995). Appl. Phys. Lett. 67, 1818.CrossRefGoogle Scholar
  23. 23.
    S. K. Kurtz and T. T. Perry (1968). J. Appl. Phys. 39, 3798.CrossRefGoogle Scholar
  24. 24.
    G. M. Sheldrick, SHELXS-2013, Program for Solution of Crystal Structure (University of Göttingen, Germany, 2013).Google Scholar
  25. 25.
    G. M. Sheldrick, SHELXS-2013, Program for Solution of Crystal Refinement (University of Göttingen, Germany, 2013).Google Scholar
  26. 26.
    G. M. Wang, Y. Q. Sun, and G. Y. Yang (2004). J. Solid State Chem. 179, 398.CrossRefGoogle Scholar
  27. 27.
    A. K. Paul, K. Sachidananda, and S. Natarajan (2010). Cryst. Growth. Des. 10, 456.CrossRefGoogle Scholar
  28. 28.
    M. A. Beckett, P. N. Horton, S. J. Coles, and D. W. Martin (2011). Inorg. Chem. 50, 12215.CrossRefGoogle Scholar
  29. 29.
    C. Y. Pan, L. J. Zhong, F. H. Zhao, Y. Z. Luo, and D. G. Li (2014). Inorg Chem. 54, 403.CrossRefGoogle Scholar
  30. 30.
    J. Li, S. P. Xia, and S. Y. Gao (1995). Spectrochim. Acta. 51A, 519.Google Scholar
  31. 31.
    W. M. Wendlandt and H. G. Hecht, Reflectance Spectroscopy (Interscience, New York, 1966).Google Scholar
  32. 32.
    C. T. Chen, Y. C. Wu, and R. K. Li (1989). Int. Rev. Phys. Chem. 8, 65.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Chong-An Chen
    • 1
  • Qi Wei
    • 1
  • Bai-Feng Yang
    • 1
  • Guo-Yu Yang
    • 1
  1. 1.MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations