Journal of Cluster Science

, Volume 28, Issue 4, pp 2147–2156 | Cite as

Relaxor Ferroelectric-Like Behavior in Barium Titanate-Doped Glass via Formation of Polar Clusters

  • M. M. El-Desoky
  • A. E. Harby
  • Ahmed E. Hannora
  • M. S. Al-Assiri
Original Paper


Glass lead free sample of composition 10BaTiO3–60V2O5–30B2O3 in mol% was prepared by conventional melt quenching technique. The as-prepared sample shows relaxor ferroelectric-like behavior which is a novel phenomenon in the field of glass science. XRD and DSC were used to emphasize the glassy nature of the present sample. Diffraction spots from clusters are clearly observed using HRTEM, which is presumably from polar clusters (PCs). The sample shows a broad and diffuse peak in the temperature dependence of dielectric permittivity ɛ` (T) and tangent loss, the temperature of which increases with increasing measuring frequency, denoting the typical relaxor behavior. The existence of distorted BaTiO3 PCs embedded in the glass matrix is responsible for the appearance of this behavior. The present glass sample shows energy storage density of about 0.11 J/cm3 at room temperature and 0.44 J/cm3 at 120 °C, which is reasonably good for bulk polar material. The results obtained in this work could lay the basis for the development of lead free materials to meet the energy storage and Eco-friendly applications.


Glasses Polar clusters Relaxor ferroelectrics Energy storage density 



We thank, Dr. Stanislava MILOVSKÁ, Earth Science Institute of the Slovak Academy of Sciences, Slovakia for measure the Raman Spectrograph sample.


  1. 1.
    G. Xu, W. Wen, C. Stock, and P. M. Gehring (2008). Nat. Mater. 7, 562–566.CrossRefGoogle Scholar
  2. 2.
    M. E. Manley, J. W. Lynn, D. L. Abernathy, E. D. Specht, O. Delaire, A. R. Bishop, R. Sahul, and J. D. Budai (2014). Nat. Commun. 5, 3683.CrossRefGoogle Scholar
  3. 3.
    D. Phelan, C. Stock, J. A. Rodriguez-Rivera, S. Chi, J. Leão, X. Long, Y. Xie, A. A. Bokov, Z. G. Ye, P. Ganesh, and P. M. Gehring (2014). Proc. Natl. Acad. Sci. 111, 1754.CrossRefGoogle Scholar
  4. 4.
    A. A. Bokov and Z. G. J. Ye (2006). Mat. Sci. 41, 31–52.CrossRefGoogle Scholar
  5. 5.
    Z. G. Ye (1998). Key. Eng. Mat. 155–156, 81–122.CrossRefGoogle Scholar
  6. 6.
    L. E. Cross (1987). Ferroelectrics 76, 267.CrossRefGoogle Scholar
  7. 7.
    V. K. Malinovsky (2014). Optoelectron. Instrum. Data Process. 50, 556–565.CrossRefGoogle Scholar
  8. 8.
    G. A. Smolenskii and V. A. Isupov (1954). Dokl Acad Nauk SSSR. 97, 653.Google Scholar
  9. 9.
    D. Fu, H. Taniguchi, M. Itoh, S. Y. Koshihara, N. Yamamoto, and S. Mori (2009). Phys. Rev. Lett. 24, (103), 207601.CrossRefGoogle Scholar
  10. 10.
    Y. Imry and S. K. Ma (1975). Phys. Rev. Lett. 35, 1399.CrossRefGoogle Scholar
  11. 11.
    A. E. Harby, A. E. Hannora, M. S. Al-Assiri, and M. M. El-Desoky (2016). J. Mater. Sci: Mater. Electron. 27, 8446–8454.Google Scholar
  12. 12.
    A. A. Bahgat, M. G. Moustafa, and E. E. Shaisha (2013). J. Mater. Sci. Technol. 29, 1166–1176.CrossRefGoogle Scholar
  13. 13.
    M. M. El-Desoky (2010). Mater. Chem. Phys. 119, 389–394.CrossRefGoogle Scholar
  14. 14.
    J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. G. Hwa, and C. T. Moynihan (2004). J. Non-Cryst. Solids 349, 88–97.CrossRefGoogle Scholar
  15. 15.
    J. D. Freire and R. S. Katiyar (1988). Phys. Rev. B. 37, 2074.CrossRefGoogle Scholar
  16. 16.
    J. C. Sczancoski, L. S. Cavalcante, T. Badapanda, S. K. Rout, S. Panigrahi, V. R. Mastelaro, J. A. Varela, M. S. Li, and E. Longo (2010). Solid State Sci. 12, 1160–1167.CrossRefGoogle Scholar
  17. 17.
    A. Dixit, S. B. Majumder, P. S. Dobal, R. S. Katiyar, and A. S. Bhalla (2004). Thin Solid Films 447, 284–288.CrossRefGoogle Scholar
  18. 18.
    T. Strathdee, L. Luisman, A. Feteira, and K. Reichmann (2011). J. Am. Ceram. Soc. 94, 2292–2295.CrossRefGoogle Scholar
  19. 19.
    X. Huang, H. Hao, S. Zhang, H. Liu, W. Zhang, Q. Xu, and M. Cao (2014). J. Am. Ceram. Soc. 97, 1797–1801.CrossRefGoogle Scholar
  20. 20.
    H. Y. Guo, C. Lei, and Z. G. Ye (2008). Phys. Rev. Lett. 92, 2901.Google Scholar
  21. 21.
    S. S. N. Bharadwaja, J. R. Kim, H. Ogihara, L. E. Cross, S. Trolier-McKinstry, and C. A. Randall (2011). Phys. Rev. B. 83, 024106.CrossRefGoogle Scholar
  22. 22.
    H. Vogel (1921). Phys Z. 22, 645. CAS| Web of Science® Times Cited (1932).Google Scholar
  23. 23.
    I. Rivera, A. Kumar, N. Ortega, R. S. Katiyar, and S. Lushnikov (2009). Solid State Commun. 149, 172–176.CrossRefGoogle Scholar
  24. 24.
    H. N. Tailor, A. A. Bokov, and Z. G. Ye (2011). Curr. Appl. Phys. 11, S175–S179.CrossRefGoogle Scholar
  25. 25.
    N. Ortega, A. Kumar, J. F. Scott, D. B. Chrisey, M. Tomazawa, S. Kumari, D. G. B. Diestra, and R. S. Katiyar (2012). J. Phy.: Condens. Matter 24, (44), 445901.Google Scholar
  26. 26.
    G. A. Samara (2003). J. Condens. Mater. 15, R367.CrossRefGoogle Scholar
  27. 27.
    H. Borkar, V. N. Singh, B. P. Singh, M. Tomar, V. Gupta, and A. Kumar (2014). RSC Adv. 4, 22840.CrossRefGoogle Scholar
  28. 28.
    M. Zannen, A. Lahmar, H. Khemakhem, and M. El Marssi (2016). Solid State Commun. 245, 1–4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. M. El-Desoky
    • 1
  • A. E. Harby
    • 1
  • Ahmed E. Hannora
    • 2
  • M. S. Al-Assiri
    • 3
  1. 1.Department of Physics, Faculty of ScienceSuez UniversitySuezEgypt
  2. 2.Department of Science and Mathematical Engineering, Faculty of Petroleum and Mining EngineeringSuez UniversitySuezEgypt
  3. 3.Physics Department, College of Science and ArtsNajran UniversityNajranKingdom of Saudi Arabia

Personalised recommendations