Journal of Cluster Science

, Volume 28, Issue 4, pp 2293–2307 | Cite as

Ab Initio Investigation of the Micro-species and Raman Spectra in Ca(NO3)2 Solution

Original Paper


In this work, the structural details and Raman spectra of the Ca(NO3)2(H2O) n=0–10 clusters were studied by using ab initio method. The results show that the main species in the cluster is the contact ion pair (CIP) when n = 1–7. When n = 8–10, the main species changes into solvent shared ion pair (SIP) CaNO3(H2O) n …NO3 in the bidentate form. One of the r Ca–N distances remains unchanged at ~2.95 Å, while the other one increases to more than 4.8 Å. The hydration distance r Ca–O remains at 2.42 Å. The contact between Ca2+ and NO3 leads to a red shift of the v 1–NO3 band while the polarization of water by Ca2+ leads to a blue shift. The vibrational frequency of water molecules remains unchanged for the same types of water molecules. Hydrogen bonds are the main reason for the red shift of vibrational frequency of water molecules.


Calcium nitrate Ab initio method Contact ion pair Solvent shared ion pair Raman spectroscopy 



We thank the National Natural Science Foundation of China (Nos. 21373251, 21573268), the Natural Science Foundation of Qinghai (No. 2015-ZJ-938Q), and the Young People Fund of Qinghai University (No. 2015-QGY-7) for financial support. We also acknowledge computing resources and time in the supercomputing center of National Super Computing Center in Shenzhen.


  1. 1.
    A. T. Blades, M. Peschke, U. H. Verkerk, and P. Kebarle (2004). J. Am. Chem. Soc. 126, 11995.CrossRefGoogle Scholar
  2. 2.
    Y. Inada, H. Hayashi, K. Sugimoto, and S. Funahashi (1999). J. Phys. Chem. A 103, 1401.CrossRefGoogle Scholar
  3. 3.
    H. Ke, C. Linde, and J. M. Lisy (2015). J. Phys. Chem. A 119, 2037.CrossRefGoogle Scholar
  4. 4.
    N. Hewish, G. Neilson, and J. Enderby (2001). J. Am. Chem. Soc. 123, 431.CrossRefGoogle Scholar
  5. 5.
    F. Jalilehvand, D. Spangberg, P. Lindqvist-Reis, K. Hermansson, I. Persson, and M. Sandstro (2001). J. Am. Chem. Soc. 123, 431.CrossRefGoogle Scholar
  6. 6.
    M. F. Bush, R. J. Saykally, and E. R. Williams (2005). J. Am. Chem. Soc. 127, 16599.CrossRefGoogle Scholar
  7. 7.
    F. Perakis, L. D. Marco, A. Shalit, F. Tang, Z. R. Kann, T. D. Kuhne, R. Torre, M. Bonn, and Y. Nagata (2016). Chem. Rev. 116, 7590.CrossRefGoogle Scholar
  8. 8.
    D. J. Miller and J. M. Lisy (2006). J. Chem. Phys. 124, 024319-1.Google Scholar
  9. 9.
    T. Megyes, S. Balint, E. Peter, T. Grosz, I. Bako, H. Krienke, and M. Bellissent-Funel (2009). J. Phys. Chem. B 113, 4054.CrossRefGoogle Scholar
  10. 10.
    Z. Zeng, C. W. Liu, G. L. Hou, G. Feng, H. G. Xu, Y. Q. Gao, and W. J. Zheng (2015). J. Phys. Chem. A 119, 2845.CrossRefGoogle Scholar
  11. 11.
    V. T. Pham and J. L. Fulton (2013). J. Chem. Phys. 138, 044201-1.Google Scholar
  12. 12.
    J. Fulton, S. Heald, Y. Badyal, and J. Simonson (2003). J. Phys. Chem. A 107, 4688.CrossRefGoogle Scholar
  13. 13.
    T. Todorova, P. H. Hunenberger, and J. Hutter (2008). J. Chem. Theory Comput. 4, 779.CrossRefGoogle Scholar
  14. 14.
    Q. Dai, J. J. Xu, H. J. Li, and H. B. Yi (2015). Mol. Phys. 133, 1.Google Scholar
  15. 15.
    T. G. Chang and D. E. Irish (1973). J. Phys. Chem. 77, 52.CrossRefGoogle Scholar
  16. 16.
    D. W. James and M. T. Carrick (1982). J. Raman Spectrosc. 13, 115.CrossRefGoogle Scholar
  17. 17.
    M. Peleg (1972). J. Phys. Chem. 76, 1019.CrossRefGoogle Scholar
  18. 18.
    X. H. Li, L. J. Zhao, J. L. Dong, H. S. Xiao, and Y. H. Zhang (2008). J. Phys. Chem. B 112, 5032.CrossRefGoogle Scholar
  19. 19.
    M. Eigen and K. Z. Tamm (1962). Elektrochem 66, 93.Google Scholar
  20. 20.
    M. Eigen and K. Z. Tamm (1962). Elektrochem 66, 107.Google Scholar
  21. 21.
    H. Zhang and Y. H. Zhang (2009). J. Comput. Chem. 31, 2772.CrossRefGoogle Scholar
  22. 22.
    L. Jiang, T. Wende, R. Bergmann, G. Meijer, and K. R. Asmis (2010). J. Am. Chem. Soc. 132, 7398.CrossRefGoogle Scholar
  23. 23.
    W. W. Rudolph and G. Irmer (2013). Dalton Trans. 42, 3919.CrossRefGoogle Scholar
  24. 24.
    W. W. Rudolph, D. Fischer, G. Irmerc, and C. C. Pye (2009). Dalton Trans. 33, 6513.CrossRefGoogle Scholar
  25. 25.
    W. W. Rudolph, R. Masonb, and C. C. Pye (2000). Phys. Chem. Chem. Phys. 2, 5030.CrossRefGoogle Scholar
  26. 26.
    W. W. Rudolph and C. C. Pye (2002). Phys. Chem. Chem. Phys. 4, 4319.CrossRefGoogle Scholar
  27. 27.
    W. W. Rudolph and G. Irmer (2013). Dalton Trans. 42, 14460.CrossRefGoogle Scholar
  28. 28.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  29. 29.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  30. 30.
    R. Ditchfield, W. J. Hehre, and J. A. Pople (1971). J. Chem. Phys. 54, 724.CrossRefGoogle Scholar
  31. 31.
    V. S. Bryantsev, M. S. Diallo, and W. A. Goddard (2009). J. Phys. Chem. B 112, 9709.CrossRefGoogle Scholar
  32. 32.
    B. Mennucci, E. Cances, and J. Tomasi (1997). J. Phys. Chem. B 101, 10506.CrossRefGoogle Scholar
  33. 33.
    J. D. Chai and M. Head-Gordon (2008). Phys. Chem. Chem. Phys. 10, 6615.CrossRefGoogle Scholar
  34. 34.
    Z. Zeng, G. L. Hou, J. Song, G. Feng, H. G. Xu, and W. J. Zheng (2015). Phys. Chem. Chem. Phys. 17, 9135.CrossRefGoogle Scholar
  35. 35.
    D. Rappoport and F. Furche (2010). J. Chem. Phys. 133, 134105-1.CrossRefGoogle Scholar
  36. 36.
    C. N. Rowley and B. Roux (2012). J. Chem. Theory Comput. 8, 3526.CrossRefGoogle Scholar
  37. 37.
    A. P. Scott and L. Radom (1996). J. Phys. Chem. 100, 16502.CrossRefGoogle Scholar
  38. 38.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. (Gaussian, Inc., Wallingford CT, 2013). Gaussian 09, Revision C.01.Google Scholar
  39. 39.
    P. M. Vollmar (1963). J. Chem. Phys. 39, 2236.CrossRefGoogle Scholar
  40. 40.
    H. Brintzinger and R. E. Hester (1966). Inorg. Chem. 5, 980.CrossRefGoogle Scholar
  41. 41.
    R. E. Hester and W. E. L. Grossman (1966). Inorg. Chem. 5, 1308.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Laboratory of Salt Resources and Chemistry, Institute of Salt LakesChinese Academy of SciencesXiningPeople’s Republic of China
  2. 2.The Mechanical Engineering College of Qinghai UniversityXiningPeople’s Republic of China

Personalised recommendations