Journal of Cluster Science

, Volume 28, Issue 4, pp 2111–2122 | Cite as

The Investigation of Excited-State Intramolecular Proton Transfer Mechanism of 2-Acetylindan-1, 3-Dion: The Solvation Effect

Original Paper

Abstract

Density functional theory (DFT) and time-dependent DFT are employed to investigate the solvent dependent excited-state intramolecular proton transfer (ESIPT) mechanism of 2-acetylindan-1,3-dion (AID) in hexane and acetonitrile (ACN). The electronic spectra of AID in the polar ACN solvent observed in the experiment are reproduced well by our calculation, but the results in nonpolar hexane are different from the experimental values. Our theoretical investigation illustrates why the emission peak of Enol-A located at about 457 nm with a weak oscillator strengthen is absent from the latest experimental report (Verma et al. in J Struct Dyn 3:023606, 2016), as the fluorescence emission from the proton-transferred product of AID in the first excited state. Thus, the single fluorescence mechanism is well explained. Moreover, the potential energy curves along the O3–H5 bond for the ground state (S0) and the first excited state (S1) are constructed. In the S1 state, the absence of the potential barrier of AID in ACN, compared with the result of hexane (0.57 kcal/mol), indicates that the ESIPT process of AID molecule is more likely to accomplish in the ACN, highlighting the solvation effect on ESIPT mechanism of AID chromophore.

Graphical Abstract

Keywords

Excited-state intramolecular proton transfer Electronic spectra Potential energy curves 

Notes

Acknowledgements

We sincerely thanks for the financial support from the Natural Science Foundation of Sichuan Province, China (2014JY0133).

References

  1. 1.
    D. Sicinska, D. G. Truhlar, and P. Paneth (2001). J. Am. Chem. Soc. 123, 7683.CrossRefGoogle Scholar
  2. 2.
    T. Kobayashi, T. Saito, and H. Ohtani (2001). Nature 414, 531.CrossRefGoogle Scholar
  3. 3.
    M. Rini, B. Z. Magnes, E. Pines, and E. T. J. Nibbering (2003). Science 301, 349.CrossRefGoogle Scholar
  4. 4.
    W. M. Kwok, C. Ma, and D. L. Phillips (2008). J. Am. Chem. Soc. 130, 5131.CrossRefGoogle Scholar
  5. 5.
    K. L. Han, and G. J. Zhao (2010). John Wiley & Sons Ltd. UK.Google Scholar
  6. 6.
    P. Song and F. C. Ma (2013). Int. Rev. Phys. Chem. 32, 589.CrossRefGoogle Scholar
  7. 7.
    G. J. Zhao, K. L. Han, and P. J. Stang (2009). J. Chem. Theory Comput. 5, 1955.CrossRefGoogle Scholar
  8. 8.
    Z. C. Wen and Y. B. Jiang (2004). Tetrahedron. 60, 11109.CrossRefGoogle Scholar
  9. 9.
    X. J. Peng, Y. K. Wu, J. L. Fan, M. Z. Tian, and K. L. Han (2005). J. Org. Chem. 70, 10524.CrossRefGoogle Scholar
  10. 10.
    G. Y. Li, G. J. Zhao, Y. H. Liu, K. L. Han, and G. Z. He (2010). J. Comput. Chem. 31, 1759.CrossRefGoogle Scholar
  11. 11.
    Y. H. Liu, M. S. Mehata, and J. Y. Liu (2011). J. Phys. Chem. A. 115, 19–24.CrossRefGoogle Scholar
  12. 12.
    G. Y. Li and T. S. Chu (2011). Phys. Chem. Chem. Phys. 13, 20766.CrossRefGoogle Scholar
  13. 13.
    Y. H. Liu, S. C. Lan, and C. R. Li (2013). Spect. Act. Part A: Molecular and Biomolecular Spectroscopy 112, 257.CrossRefGoogle Scholar
  14. 14.
    J. Wang, Q. Chu, X. Liu, C. Wesdemiotis, and Y. Pang (2013). J. Phys. Chem. B. 117, 4127.CrossRefGoogle Scholar
  15. 15.
    P. Song, J. X. Ding, and T. S. Chu (2012). Spectrochim. Acta Part A. 97, 746.CrossRefGoogle Scholar
  16. 16.
    W. Yi, A. Malkovskiy, Q. Chu, A. P. Sokolov, M. L. Colon, M. Meador, and Y. Pang (2008). J. Phys. Chem. B. 112, 12263.CrossRefGoogle Scholar
  17. 17.
    H. Beens, K. H. Grellmann, M. Gurr, and A. H. Weller (1965). Discuss. Faraday Soc. 39, 183.CrossRefGoogle Scholar
  18. 18.
    A. H. Weller (1961). Prog. React. Kinet. 1, 187.Google Scholar
  19. 19.
    Y. L. Cui, H. Zhao, L. Jiang, P. Y. Li, Y. Ding, and P. Song (2015). Comput. Theo. Chem. 1074, 125.CrossRefGoogle Scholar
  20. 20.
    D. P. Yang, Y. G. Yang, and Y. F. Liu (2013). Commun. Comput.Chem. 1, 205.Google Scholar
  21. 21.
    M. T. Sun, Z. L. Zhang, H. R. Zheng, and H. X. Xu (2012). Science Reports. 2, 1.Google Scholar
  22. 22.
    F. B. Yu, P. Li, B. S. Wang, and K. L. Han (2013). J. Am. Chem. Soc. 20, 7674.CrossRefGoogle Scholar
  23. 23.
    F. B. Yu, P. Li, G. J. Zhao, T. S. Chu, and K. L. Han (2011). J. Am. Chem. Soc. 133, 11030.CrossRefGoogle Scholar
  24. 24.
    Y. X. Jiang and Y. J. Peng (2015). J. Clust. Sci. 26, 1983.CrossRefGoogle Scholar
  25. 25.
    M. T. Sun (2006). J. Chem. Phys. 124, 054903.CrossRefGoogle Scholar
  26. 26.
    Y. Liu and S. C. Lan (2013). Commun. Comput. Chem. 1, 235.Google Scholar
  27. 27.
    D. G. Ma, F. S. Liang, L. X. Wang, S. T. Lee, and L. S. Hung (2002). Chem. Phys. Lett. 358, 24.CrossRefGoogle Scholar
  28. 28.
    B. L. Feringa (2011). Acc. Chem. Res. 34, 504.CrossRefGoogle Scholar
  29. 29.
    M. Z. Zhang, B. P. Ren, Y. Wang, and C. X. Zhao (2013). Commun.Comput.Chem. 1, 216.Google Scholar
  30. 30.
    G. J. Zhao and K. L. Han (2007). J. Chem. Phys. 127, 024306.CrossRefGoogle Scholar
  31. 31.
    G. Dhaka, J. Singh, and N. Kaur (2016). Inorganica Chimica Acta. 450, 380.CrossRefGoogle Scholar
  32. 32.
    C. Chudoba, E. T. J. Nibbering, and T. Elsaesser (1998). Phys. Rev. Lett. 81, 3010.CrossRefGoogle Scholar
  33. 33.
    R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli (1994). Nature 369, 471.CrossRefGoogle Scholar
  34. 34.
    G. J. Kearley, F. Fillaux, M. H. Baron, S. Bennington, and J. A. Tomkinson (1994). Science 264, 1285.CrossRefGoogle Scholar
  35. 35.
    A. Douhal, S. H. Kim, and A. H. Zewail (1995). Nature 378, 260.CrossRefGoogle Scholar
  36. 36.
    A. Luzar and D. Chandler (1996). Nature 379, 55.CrossRefGoogle Scholar
  37. 37.
    W. Domcke and A. L. Sobolewski (2003). Science 302, 1693.CrossRefGoogle Scholar
  38. 38.
    V. Samant, A. K. Singh, G. Ramakrishna, H. N. Ghosh, T. K. Ghanty, and D. K. Palit (2005). J. Phys. Chem. A. 109, 8693.CrossRefGoogle Scholar
  39. 39.
    J. D. Korp, I. Bernal, and T. L. Lemke (1980). Acta Crystallogr. Sect. B: Struct. Sci. 36, 428.CrossRefGoogle Scholar
  40. 40.
    V. Enchev, S. Bakalova, G. Ivanova, and N. Stoyanov (1999). Chem. Phys. Lett. 314, 234.CrossRefGoogle Scholar
  41. 41.
    P. K. Verma, A. Steinbacher, A. Schmiedel, P. Nuernberger, and T. Brixner (2016). J. Struct. Dyn. 3, 023606.CrossRefGoogle Scholar
  42. 42.
    S. Angelova, V. Enchev, K. Kostova, M. Rogojerov, and G. Ivanova (2007). J. Phys. Chem. A. 111, 9901.CrossRefGoogle Scholar
  43. 43.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Scalmani, G. Cheeseman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox.Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, 2009).Google Scholar
  44. 44.
    Y. H. Liu, M. S. Mehata, and S. C. Lan (2014). Spectrochim. Acta. A. 128, 280.CrossRefGoogle Scholar
  45. 45.
    Y. H. Liu, S. C. Lan, C. Y. Zhu, and S. H. Lin (2015). J. Phys. Chem. A. 119, 6269.CrossRefGoogle Scholar
  46. 46.
    G. J. Zhao and K. L. Han (2008). Chem. Phys. Chem. 9, 1842.CrossRefGoogle Scholar
  47. 47.
    G. Y. Liu, Y. H. Li, H. Zhang, and G. H. Cui (2013). Commun. Comput. Chem. 1, 88.Google Scholar
  48. 48.
    D. D. Wang and G. J. Zhao (2013). Commun. Comput. Chem. 1, 181.Google Scholar
  49. 49.
    B. Mennucci, E. Cances, and J. Tomasi (1997). J. Phys. Chem. B. 101, 10506.CrossRefGoogle Scholar
  50. 50.
    E. Cances, B. Mennucci, and J. Tomasi (1997). J. Chem. Phys. 107, 3032.CrossRefGoogle Scholar
  51. 51.
    R. Cammi and J. Tomasi (1995). J. Comput. Chem. 16, 1449.CrossRefGoogle Scholar
  52. 52.
    T. Sun and Y. B. Wang (2011). Acta Phys. Chim. Sin. 27, 2553.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Physics and Space ScienceChina West Normal UniversityNanchongChina
  2. 2.School of Physics and Optoelectronic EngineeringLudong UniversityYantaiChina

Personalised recommendations