Journal of Cluster Science

, Volume 28, Issue 4, pp 2133–2146 | Cite as

A Facile Approach for Synthesis of a Novel WO3–gC3N4/Pt–Sn–Os Catalyst and Its Application for Methanol Electro-oxidation

  • Mehrnoush Ghanbari
  • Gholam Hossein Rounaghi
  • Narges Ashraf
  • Masoomeh Paydar
  • Iman Razavipanah
  • Mahdi Karimi-Nazarabad
Original Paper


In the present work, a novel WO3–gC3N4/Pt–Sn–Os catalyst was synthesized and used for fabrication of a modified electrode for electro-oxidation of methanol molecules. The WO3–gC3N4 nanocomposite was transferred onto the surface of a glassy carbon electrode (GCE) and then, the surface of the modified electrode was potentiostatically coated with Pt–Sn–Os ternary alloy nanoparticles. The morphology of the prepared electrode (GCE/WO3–gC3N4/Pt–Sn–Os), was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. The electro-oxidation of methanol molecules on the surface of GC/WO3–gC3N4/Pt–Sn–Os modified electrode was studied using various electrochemical methods such as cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). The charge transfer resistance and the double layer capacitance were determined by the EIS measurements. The electro-oxidation of methanol molecules was also investigated from kinetic point of view using the proposed modified electrode. The electrocatalytic performance of the modified electrode was also compared with the other constructed electrodes for methanol oxidation.


Electro-oxidation Methanol WO3–gC3N4 nanocomposite Pt–Sn–Os ternary alloy 



The authors gratefully acknowledge the support of this work by Ferdowsi University of Mashhad, Mashhad, Iran (Grant No. 3/33748).


  1. 1.
    J. Yano, T. Shiraga, and A. Kitani (2008). J. Solid State Electrochem. 12, 1179.CrossRefGoogle Scholar
  2. 2.
    E. Antolini and E. Gonzalez (2010). J. Power Sources 195, 3431.CrossRefGoogle Scholar
  3. 3.
    K. Zhang, Z. Xiong, S. Li, B. Yan, J. Wang, and Y. Du (2017). J. Alloys Compd. 706, 89.CrossRefGoogle Scholar
  4. 4.
    S. Wasmus and A. Küver (1999). J. Electroanal. Chem. 461, 14.CrossRefGoogle Scholar
  5. 5.
    X. Ren, P. Zelenay, S. Thomas, J. Davey, and S. Gottesfeld (2000). J. Power Sources 86, 111.CrossRefGoogle Scholar
  6. 6.
    K. Shimazu, K. Uosaki, H. Kita, and Y. Nodasaka (1988). J. Electroanal. Chem. 256, 481.CrossRefGoogle Scholar
  7. 7.
    M. Watanabe, S. Saegusa, and P. Stonehart (1989). J. Electroanal. Chem. 271, 213.CrossRefGoogle Scholar
  8. 8.
    K. Shimazu, R. Inada, and H. Kita (1990). J. Electroanal. Chem. 284, 523.CrossRefGoogle Scholar
  9. 9.
    H. Razmi, E. Habibi, and H. Heidari (2008). Electrochim. Acta 53, 8178.CrossRefGoogle Scholar
  10. 10.
    C.-W. Kuo, B.-K. Chen, Y.-H. Tseng, T.-H. Hsieh, K.-S. Ho, T.-Y. Wu, and H.-R. Chen (2012). J. Taiwan Inst. Chem. Eng. 43, 798.CrossRefGoogle Scholar
  11. 11.
    M. Watanabe, Y. Furuuchi, and S. Motoo (1985). J. Electroanal. Chem. 191, 367.CrossRefGoogle Scholar
  12. 12.
    Y. Zhu and C.R. Cabrera (2001). Electrochem. Solid-State Lett. 4, A45.CrossRefGoogle Scholar
  13. 13.
    J. Huang, H. Yang, Q. Huang, Y. Tang, T. Lu, and D.L. Akins (2004). J. Electrochem. Soc. 151, A1810.CrossRefGoogle Scholar
  14. 14.
    M. Pournaghi-Azar and B. Habibi-A (2005). J. Electroanal. Chem. 580, 23.CrossRefGoogle Scholar
  15. 15.
    J.-S. Choi, W.S. Chung, H.Y. Ha, T.-H. Lim, I.-H. Oh, S.-A. Hong, and H.-I. Lee (2006). J. Power Sources 156, 466.CrossRefGoogle Scholar
  16. 16.
    F. Kadirgan, S. Beyhan, and T. Atilan (2009). Int. J. Hydrogen Energ. 34, 4312.CrossRefGoogle Scholar
  17. 17.
    Y.-J. Song, S.-B. Han, J.-M. Lee, and K.-W. Park (2009). J. Alloys Compd. 473, 516.CrossRefGoogle Scholar
  18. 18.
    I. Ávila-García, C. Ramírez, J.H. López, and E.A. Estrada (2010). J. Alloys Compd. 495, 462.CrossRefGoogle Scholar
  19. 19.
    F. Li, Y. Guo, M. Chen, H. Qiu, X. Sun, W. Wang, Y. Liu, and J. Gao (2013). Int. J. Hydrogen Energ. 38, 14242.CrossRefGoogle Scholar
  20. 20.
    E.S. Steigerwalt, G.A. Deluga, D.E. Cliffel, and C. Lukehart (2001). J. Phys. Chem. B 105, 8097.CrossRefGoogle Scholar
  21. 21.
    Y. Lin, X. Cui, C.H. Yen, and C.M. Wai (2005). Langmuir 21, 11474.CrossRefGoogle Scholar
  22. 22.
    L. Cao, F. Scheiba, C. Roth, F. Schweiger, C. Cremers, U. Stimming, H. Fuess, L. Chen, W. Zhu, and X. Qiu (2006). Angew. Chem. Int. Ed. 45, 5315.CrossRefGoogle Scholar
  23. 23.
    S. Palmero, A. Colina, E. Muñoz, A. Heras, V. Ruiz, and J. López-Palacios (2009). Electrochem. Commun. 11, 122.CrossRefGoogle Scholar
  24. 24.
    Y. Li, L. Tang, and J. Li (2009). Electrochem. Commun. 11, 846.CrossRefGoogle Scholar
  25. 25.
    M. Karimi-Nazarabad, E.K. Goharshadi, M.H. Entezari, and P. Nancarrow (2015). Microfluid. Nanofluid. 19, 1191.CrossRefGoogle Scholar
  26. 26.
    W. Morales, M. Cason, O. Aina, N.R. de Tacconi, and K. Rajeshwar (2008). J. Am. Chem. Soc. 130, 6318.CrossRefGoogle Scholar
  27. 27.
    F. Zheng, M. Zhang, and M. Guo (2013). Thin Solid Films 534, 45.CrossRefGoogle Scholar
  28. 28.
    R. Abe, H. Takami, N. Murakami, and B. Ohtani (2008). J. Am. Chem. Soc. 130, 7780.CrossRefGoogle Scholar
  29. 29.
    M.M. Natile, F. Tomaello, and A. Glisenti (2006). Chem. Mater. 18, 3270.CrossRefGoogle Scholar
  30. 30.
    T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama (2007). J. Phys. Chem. C 111, 7574.CrossRefGoogle Scholar
  31. 31.
    S. Wei, Y. Ma, Y. Chen, L. Liu, Y. Liu, and Z. Shao (2011). J. Hazard. Mater. 194, 243.CrossRefGoogle Scholar
  32. 32.
    P. Zhao, C.X. Kronawitter, X. Yang, J. Fu, and B.E. Koel (2014). Phys. Chem. Chem. Phys. 16, 1327.CrossRefGoogle Scholar
  33. 33.
    X. Bai, L. Wang, R. Zong, and Y. Zhu (2013). J. Phys. Chem. C 117, 9952.CrossRefGoogle Scholar
  34. 34.
    M. Zhu, C. Zhai, M. Sun, Y. Hu, B. Yan, and Y. Du (2017). Appl. Catal. B: Environ. 203, 108.CrossRefGoogle Scholar
  35. 35.
    R.C. Dante, P. Martín-Ramos, A. Correa-Guimaraes, and J. Martín-Gil (2011). Mater. Chem. Phys. 130, 1094.CrossRefGoogle Scholar
  36. 36.
    J. Xu, Y. Wang, and Y. Zhu (2013). Langmuir 29, 10566.CrossRefGoogle Scholar
  37. 37.
    T. Ohno, N. Murakami, T. Koyanagi, and Y. Yang (2014). J. CO 2 Utilization 6, 17.CrossRefGoogle Scholar
  38. 38.
    S. Golabi and A. Nozad (2003). Electroanalysis 15, 278.CrossRefGoogle Scholar
  39. 39.
    B. Habibi, M. Pournaghi-Azar, H. Abdolmohammad-Zadeh, and H. Razmi (2009). Int. J. Hydrogen Energ. 34, 2880.CrossRefGoogle Scholar
  40. 40.
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, and J. M. Carlsson (2008). J. Mater. Chem. 18, 4893.CrossRefGoogle Scholar
  41. 41.
    X. Zhang, G. Xia, C. Huang, and Y. Wang (2013). Int. J. Hydrogen Energ. 38, 8909.CrossRefGoogle Scholar
  42. 42.
    E. Katz and I. Willner (2003). Electroanalysis 15, 913.CrossRefGoogle Scholar
  43. 43.
    M.E. Orazem, and B. Tribollet, Electrochemical impedance spectroscopy, John Wiley & Sons, 2011.Google Scholar
  44. 44.
    B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani (2010). Electrochim. Acta 55, 6218.CrossRefGoogle Scholar
  45. 45.
    D. Soundararajan, J. Park, K. Kim, and J. Ko (2012). Curr. Appl. Phys. 12, 854.CrossRefGoogle Scholar
  46. 46.
    J. Wang, Analytical electrochemistry, John Wiley & Sons, 2006.Google Scholar
  47. 47.
    M. Zhiani, B. Rezaei, and J. Jalili (2010). Int. J. Hydrogen Energ. 35, 9298.CrossRefGoogle Scholar
  48. 48.
    R. Raman, A. Shukla, A. Gayen, M. Hegde, K. Priolkar, P. Sarode, and S. Emura (2006). J. Power Sources 157, 45.CrossRefGoogle Scholar
  49. 49.
    S. Lu, C. Zhang, and Y. Liu (2011). Int. J. Hydrogen Energ. 36, 1939.CrossRefGoogle Scholar
  50. 50.
    U.B. Demirci (2007). J. Power Sources 173, 11.CrossRefGoogle Scholar
  51. 51.
    B. Hasa, E. Kalamaras, E.I. Papaioannou, L. Sygellou, and A. Katsaounis (2013). Int. J. Hydrogen Energ. 38, 15395.CrossRefGoogle Scholar
  52. 52.
    H. Huang, H. Chen, D. Sun, and X. Wang (2012). J. Power Sources 204, 46.CrossRefGoogle Scholar
  53. 53.
    K. Kakaei and M. Zhiani (2013). J. Power Sources 225, 356.CrossRefGoogle Scholar
  54. 54.
    H. Gharibi, M. Amani, H. Pahlavanzadeh, and M. Kazemeini (2013). Electrochim. Acta 97, 216.CrossRefGoogle Scholar
  55. 55.
    R. Yan and B. Jin (2014). Electrochim. Acta 115, 449.CrossRefGoogle Scholar
  56. 56.
    Y. Zheng, H. Chen, Y. Dai, N. Zhang, W. Zhao, S. Wang, Y. Lou, Y. Li, and Y. Sun (2015). Electrochim. Acta 178, 74.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mehrnoush Ghanbari
    • 1
  • Gholam Hossein Rounaghi
    • 1
  • Narges Ashraf
    • 1
  • Masoomeh Paydar
    • 1
  • Iman Razavipanah
    • 1
  • Mahdi Karimi-Nazarabad
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesFerdowsi University of MashhadMashhadIran

Personalised recommendations