Advertisement

Journal of Cluster Science

, Volume 28, Issue 4, pp 2123–2131 | Cite as

Strategic Green Synthesis, Characterization and Catalytic Application to 4-Nitrophenol Reduction of Palladium Nanoparticles

  • R. Gopalakrishnan
  • B. Loganathan
  • S. Dinesh
  • K. Raghu
Original Paper
  • 231 Downloads

Abstract

We present a study on the catalytic reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride in the presence of palladium nanoparticles (PdNPs) using the seed extract of milk thistle (Silibum marianum). Ultra violet-visible (UV–Vis) absorption spectroscopy, X-ray diffraction pattern and transmission electron microscopic analyses were respectively used to characterize and confirm the formation, crystalline nature and morphology of the as-synthesized PdNPs. The particles are spherical, crystalline and the size range is <20 nm. The identification of the possible bio-molecules responsible for the reeducation and stabilization of PdNPs was characterized through Fourier transform infrared spectroscopy. The effectiveness of as-synthesized PdNPs catalyst has been evaluated, on the well-known 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and it was monitored using UV–Vis absorbance spectroscopy. The reduction was very efficient and the as-synthesized homogeneous liquid-phase catalyst is eco-friendly, very efficient, easy to synthesize, stable, cost effective and have the potential for industrial applications.

Keywords

Silybum marianum Biosynthesis Palladium nanoparticles Catalytic activity 4-Nitrophenol reduction 

Notes

Acknowledgement

The authors are grateful to Dr. S. Barathan (Professor, Department of Physics and Dean, Faculty of Science, Annamalai University) for his motivations and suggestions throughout this work.

References

  1. 1.
    K. Kim, K. L. Kim, and K. S. Shin (2011). J. Phys. Chem. C 115, 14844–14851.CrossRefGoogle Scholar
  2. 2.
    H. U. Blaser, A. Indolese, A. Schnyder, H. Steiner, and M. Studer (2001). J. Mol. Catal. A: Chem. 173, 3–18.CrossRefGoogle Scholar
  3. 3.
    G. C. Fortman and S. P. Nolan (2011). Chem. Soc. Rev. 40, 5151.CrossRefGoogle Scholar
  4. 4.
    R. Narayanan and M. A. El-Sayed (2005). J. Phys. Chem. B 10, 4357.CrossRefGoogle Scholar
  5. 5.
    B. Loganathan and B. Karthikeyan (2013). Colloids Surf. A Physicochem. Eng. Asp. 436, 944–952.CrossRefGoogle Scholar
  6. 6.
    M. Nasrollahzadeh, S. M. Sajadi, and M. Maham (2015). J. Mol. Catal. A: Chem. 396, 297–303.CrossRefGoogle Scholar
  7. 7.
    D. S. Sheny, D. Philip, and J. Mathew (2012). Spectrochim. Acta A 91, 35–38.CrossRefGoogle Scholar
  8. 8.
    K. Flora, M. Hahn, H. Rosen, and K. Benner (1998). Am. J. Gastroenterol. 93, 139–143.CrossRefGoogle Scholar
  9. 9.
    R. Gopalakrishnan and K. Raghu (2014). J. Nanosci. doi: 10.1155/2014/905404.Google Scholar
  10. 10.
    R. Gopalakrishnan, B. Loganathan, and K. Raghu (2015). RSC Adv. 5, 31691–31699.CrossRefGoogle Scholar
  11. 11.
    J. Ye, A. Singh, and O. Ward (2004). World J. Microbiol. Biotechnol. 20, 117–135.CrossRefGoogle Scholar
  12. 12.
    S. Zhao, H. Ma, M. Wang, C. Cao, J. Xiong, Y. Xu, and S. Yao (2010). Photochem. Photobiol. Sci. 9, 710–715.CrossRefGoogle Scholar
  13. 13.
    S. Sandip, P. Anjali, K. Subrata, B. Soumen, and P. Tarasankar (2010). Langmuir 26, 2885–2893.CrossRefGoogle Scholar
  14. 14.
    B. Loganathan, V. L. Chandraboss, S. Senthilvelan, and B. Karthikeyan (2015). Phys. Chem. Chem. Phys. 17, 21268–21277.CrossRefGoogle Scholar
  15. 15.
    B. Loganathan, V. L. Chandraboss, S. Senthilvelan, and B. Karthikeyan (2016). Physica E 75, 223–234.CrossRefGoogle Scholar
  16. 16.
    B. Loganathan, V. L. Chandraboss, M. Murugavelu, S. Senthilvelan, and B. Karthikeyan (2015). J. Sol-Gel. Sci. Technol. 74, 1–14.CrossRefGoogle Scholar
  17. 17.
    R. Mathammal, N. Sudha, L. Guru Prasad, N. Ganga, and V. Krishnakumar (2015). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 740–748.CrossRefGoogle Scholar
  18. 18.
    L. Guru Prasad, V. Krishnakumar, and R. Nagalakshmi (2013). Spectrochim. Acta A Mol. Biomol. Spectrosc. 110, 377–382.CrossRefGoogle Scholar
  19. 19.
    J. Liu, G. Qin, P. Raveendran, and Y. Ikushima (2006). Chem. Eur. J. 12, 2131–2138.CrossRefGoogle Scholar
  20. 20.
    S. Wunder, F. Polzer, L. Yan, Yu Mei, and M. Ballauff (2010). J. Phys. Chem. C 114, 8814–8820.CrossRefGoogle Scholar
  21. 21.
    C. Chu and S. Zhaohui (2014). Langmuir 30, 15345–15350.CrossRefGoogle Scholar
  22. 22.
    Y. S. Seo, E.-Y. Ahn, J. Park, T. Y. Kim, J. E. Hong, K. Kim, Y. Park, and Y. Park (2017). Nanoscale Res. Lett. 12, 1–11.CrossRefGoogle Scholar
  23. 23.
    C. Castaneda, F. Tzompantzi, and R. Gomez (2016). J. Sol-Gel. Sci. Technol. 80, (2), 426–435.CrossRefGoogle Scholar
  24. 24.
    S. J. Mane Gavade, G. H. Nikam, S. R. Sabale, and B. V. Tamhankar (2016). Mater. Today Proc. 3, 4109–4114.CrossRefGoogle Scholar
  25. 25.
    J. Safari, A. E. Najafabadi, Z. Zarnegar, and S. F. Masoule (2016). Green Chem. Lett. Rev. 9, 20–26.CrossRefGoogle Scholar
  26. 26.
    S. Mehmood, N. K. Janjua, F. Saira, and H. Fenniri (2016). J. Spectrosc. doi: 10.1155/2016/6210794.Google Scholar
  27. 27.
    K. Kuroda, T. Ishida, and M. Haruta (2009). J. Mol. Catal. A: Chem. 298, 7–11.CrossRefGoogle Scholar
  28. 28.
    P. Zhang, R. Li, Y. Huang, and Q. Chen (2014). ACS Appl. Mater. Interfaces. 6, 2671–2678.CrossRefGoogle Scholar
  29. 29.
    J. A. Adekoya, E. O. Dare, M. A. Mesubi, A. A. Nejo, H. C. Swart, and N. Revaprasadu (2014). Results Phys. 4, 12–19.CrossRefGoogle Scholar
  30. 30.
    J.-G. Wang, X. Hua, M. Li, and Y.-T. Long (2016). ACS Appl. Mater. Interfaces. 9, (3), 3016–3023.CrossRefGoogle Scholar
  31. 31.
    G. Liao, J. Chen, W. Zeng, Yu Chunhan, C. Yi, and X. Zushun (2016). J. Phys. Chem. C 120, (45), 25935–25944.CrossRefGoogle Scholar
  32. 32.
    C. Kastner and A. F. Thunemann (2016). Langmuir 32, (29), 7383–7391.CrossRefGoogle Scholar
  33. 33.
    F. Xia, X. Xiaoyang, X. Li, L. Zhang, L. Zhang, Yu Wei Wang, and J. G. Liu (2014). Ind. Eng. Chem. Res. 53, (26), 10576–10582.CrossRefGoogle Scholar
  34. 34.
    S. Chairam, W. Konkamdee, and R. Parakhun (2015). J. Saudi Chem. Soc. doi: 10.1016/j.jscs.2015.11.001.Google Scholar
  35. 35.
    A. Fedorczyk, J. Ratajczak, O. Kuzmych, and M. Skompska (2015). J. Solid State Electrochem. 19, (9), 2849–2858.CrossRefGoogle Scholar
  36. 36.
    C. H. Prasad, K. Srinivasulu, and P. Venkateswarlu (2015). Ind. Chem. 1, 1–4.CrossRefGoogle Scholar
  37. 37.
    H. Saikia, B. J. Borah, Y. Yamada, and P. Bharali (2017). J. Colloid Interface Sci. 486, 46–57.CrossRefGoogle Scholar
  38. 38.
    A. Guarnizo, I. Angurell, G. Muller, J. Llorca, M. Seco, O. Rossell, and M. D. Rossell (2016). RSC Adv. 6, 68675–68684.CrossRefGoogle Scholar
  39. 39.
    N. Bingwa and R. Meijboom (2014). J. Phys. Chem. C 118, 19849–19858.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • R. Gopalakrishnan
    • 1
  • B. Loganathan
    • 2
  • S. Dinesh
    • 1
  • K. Raghu
    • 1
  1. 1.Department of PhysicsAnnamalai UniversityAnnamalainagarIndia
  2. 2.Department of Chemistry (Science and Humanities)M. Kumarasamy College of Engineering (Autonomous)Thalavapalayam, KarurIndia

Personalised recommendations