Journal of Cluster Science

, Volume 28, Issue 4, pp 2097–2109 | Cite as

Nanosized Synthesis of Nickel Oxide by Electrochemical Reduction Method and their Antifungal Screening

  • Ashwini A. Agale
  • Suresh T. Gaikwad
  • Anjali S. Rajbhoj
Original Paper


Nano-particle oxides of transition metals have attracted materials scientists. These materials have exceptional properties which stimulate many advanced applications. As like all other transition metal oxide, nickel oxide has been especially investigated in the degradation of several environmental pollutants due to its properties. The nickel oxide was synthesized by electrochemical reduction method using tetra-hexyl ammonium bromide as structure directing agent in an organic medium viz. tetra hydro furan and acetonitrile in 1:4 ratio by different current densities 10 and 14 mA/cm2. Such nanoparticles were prepared using simple electrolysis cell in which the sacrificial anode is a commercially available nickel metal sheet and platinum (inert) sheet act as a cathode. The synthesized nickel oxide nanoparticles were characterized by using UV–visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectroscopy (EDS) and transmission electron microscope (TEM) analysis techniques. TEM analysis proved a cubic structure with size of 25–30 nm which was in agreement with the result calculated from the XRD analysis. EDS analysis revealed the presence of Ni and O element. The nanoparticles were tested for antifungal activity against human pathogens like A. alternaria, A. niger, F. oxysporum, etc., which showed excellent antifungal properties.


Electrochemical cell Tetra hexyl ammonium bromide Nickel oxide nanoparticles Antifungal study 



The authors are grateful do Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad and UGC-SAP-DRS-1 scheme New Delhi for providing laboratory facility. One of the authors (ASR) thankful for financial assistance from Major Research project University Grants Commission, New Delhi. The author (AAA) is also thankful to the University Grants Commission, New Delhi for Rajiv Gandhi National Fellowship.


  1. 1.
    E. Rodriguez-Leon, R. Iniguez-Palomares, R. Navarro, R. Herrra-Urbina, J. Tanori, C. Palomares, and A. Maldonado (2013). Nano Res. Lett. 8, 318.CrossRefGoogle Scholar
  2. 2.
    M. A. Domınguez-Crespoa, E. Ramırez-Menesesa, V. Montiel-Palmab, A. M. Torres Huerta, and H. Dorantes Rosalesc (2009). Int. J. Hydrogen Energy 34, 1664.CrossRefGoogle Scholar
  3. 3.
    Y. Wang and S. Gunasekaran (2011). J. Nanopart. Res. 14, 1200.CrossRefGoogle Scholar
  4. 4.
    N. Cordente, M. Respaud, F. Senocq, M. Casanove, C. Amiens, and B. Chaudret (2001). Nano Letts. 1, 565.CrossRefGoogle Scholar
  5. 5.
    J. M. Khurana and S. Yadav (2012). Aust. J. Chem. 65, 314–319.CrossRefGoogle Scholar
  6. 6.
    D. Liu, S. Ren, H. Wu, et al. (2008). J. Mater. Sci. 43, 1974.CrossRefGoogle Scholar
  7. 7.
    C. Mirkin, R. Letsinger, R. Mucic, and J. Storhoff (1996). Nature 382, 607.CrossRefGoogle Scholar
  8. 8.
    J. Storhoff, R. Elghanian, R. Mucic, C. Mirkin, and R. Letsinger (1959). J. Am. Chem. Soc. 1998, 120.Google Scholar
  9. 9.
    P. Prema and S. Thangapandiyan (2013). Int. J. Pharm. Pharm. Sci. 5, 310.Google Scholar
  10. 10.
    S. Priyadarshini, V. Gopinath, N. M. Priyadharshini, D. MubarakAli, and P. Velusamy (2013). Colloids Surf. B 102, 232.CrossRefGoogle Scholar
  11. 11.
    J. Puiso, D. Jonkuviene, I. Macioniene, J. Salomskiene, I. Jasutiene, and R. Kondrotas (2014). Colloids Surf. B 121, 214.CrossRefGoogle Scholar
  12. 12.
    O. Gordon, T. V. Slenters, P. S. Brunetto, A. E. Villaruz, and D. E. Sturdevant (2010). Antimicrob. Agents Chemother. 54, 4208.CrossRefGoogle Scholar
  13. 13.
    S. Flora, M. Mittal, A. Mehta (2008) Indian J Med Res 128. Google Scholar
  14. 14.
    M. Kokkoris, C. Trapalis, S. Kossionides, R. Vlastou, B. Nsouli, R. Grotzschel, S. Spartalis, G. Kordas, and T. Paradellis (2002). Nucl. Instr. Meth. Phys. Res. B. 188, 67.CrossRefGoogle Scholar
  15. 15.
    S. Barranco, J. Spadaro, T. Berger, and R. Becker (1974). Clin. Orthop. 100, 250.CrossRefGoogle Scholar
  16. 16.
    K. J. Klabunde in J. K. Kenneth (ed.), Nanoscale Materials in Chemistry (Wiley-Interscience, New York, 2000).Google Scholar
  17. 17.
    J. R. Morones, J. L. Elechiguerra, A. Camacho, et al. (2005). Nanotechnology 16, 10.CrossRefGoogle Scholar
  18. 18.
    A. Goffeau (2008). Drug resistance: the fight against fungi. Nature 452, 541–542.CrossRefGoogle Scholar
  19. 19.
    J. A. Lemire, J. J. Harrison, and R. J. Turner (2013). Microbiology 11, 371–384.Google Scholar
  20. 20.
    M. Singh, M. Kumar, R. Kalaivani, S. Manikandan, and A. Kumaraguru (2013). Bioprocess Biosyst. Eng. 36, 407–415.CrossRefGoogle Scholar
  21. 21.
    Y. Xu, C. Gao, X. Li, Y. He, L. Zhou, G. Pang, and S. Sun (2013). J. Ocul. Pharmacol. Ther. 29, 270.CrossRefGoogle Scholar
  22. 22.
    S. Suresh, S. Karthikeyan, and K. Jayamoorthy (2016). Karbala Int. J. Mod. Sci. 2, 69–77.CrossRefGoogle Scholar
  23. 23.
    M. T. Reetz, W. Helbig, and S. A. Quaiser Active metals (VCH, Weinheim, 1996), pp. 279–297.Google Scholar
  24. 24.
    M. T. Reetz, R. Breinbauer, and K. Wanninger (1996). Tetrahedron Lett. 37, 4499.CrossRefGoogle Scholar
  25. 25.
    A.A. Agale, S.M. Janjal, S.T. Gaikwad, A.S. Rajbhoj (2016) J Clust Science. Google Scholar
  26. 26.
    C. Burda, T. Green, C. Landes, S. Link, R. Little, J. Petroski, M.A. El-Sayed (2000) Weinheim: Wiley-VCH (pp. 197–241).Google Scholar
  27. 27.
    P. Scherrer (1918). Gottinger Nachrichten Gesell. 2, 98.Google Scholar
  28. 28.
    P. Christophe, L. Patricia, and P. Marie-Paule (1993). J. Phys. Chem. 97, 12974.CrossRefGoogle Scholar
  29. 29.
    M. Nowsath Rifaya, T. Theivasanthi, and M. Alagar (2012). Nanosci. Nanotechnol. 2, (5), 134–138.CrossRefGoogle Scholar
  30. 30.
    C. Mann and J. Markham (1998). J. Appl. Microbiol. 84, (4), 538–544.CrossRefGoogle Scholar
  31. 31.
    G. Tortora, R. B. Funke, and L. C. Case Microbiology: an introduction (Addison-Wesley Longman Inc, New York, 2001).Google Scholar
  32. 32.
    D. Dinesh, K. Murugan, P. Madhiyazhagan, C. Panneerselvam, P. M. Kumar, M. Nicoletti, W. Jiang, G. Benelli, B. Chandramohan, and U. Suresh (2015). Parasitol. Res. 114, 1519.CrossRefGoogle Scholar
  33. 33.
    K. Kenneth, Y. Wong, and L. Xuelai (2010). Med. Chem. Commun. 1, 125–131.CrossRefGoogle Scholar
  34. 34.
    C. Pellieux, A. Dewilde, C. Pierlot, and J.M. Aubry (2000) Methods in Enzymology, vol. 319.Google Scholar
  35. 35.
    S. H. Kim, H. S. Lee, D. S. Ryu, S. J. Choi, and D. S. Lee (2011). Korean J. Microbiol. Biotechnol 39, 1.CrossRefGoogle Scholar
  36. 36.
    J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, and M. Shimizu (1996). J. Chem. Eng. Jpn 29, (4), 627–633.CrossRefGoogle Scholar
  37. 37.
    Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi (2011). Appl. Environ. Microbiol. 77, (7), 2325–2331.CrossRefGoogle Scholar
  38. 38.
    L. Zhang, Y. Jiang, Y. Ding, M. Povey, and D. York (2007). J. Nanopart. Res. 9, (3), 479–489.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ashwini A. Agale
    • 1
  • Suresh T. Gaikwad
    • 1
  • Anjali S. Rajbhoj
    • 1
  1. 1.Department of ChemistryDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia

Personalised recommendations