Journal of Cluster Science

, Volume 28, Issue 4, pp 1815–1823 | Cite as

Triangular Clusters of Molybdenum Coordinated with Tetrabromocatecholate

Brief Communication


New triangular cluster (Ph4P)2[Mo3S7(TBC)3] (2) (TBC—tetrabromocatecholate) was synthesized by the straightforward reaction of ( n Bu4N)2[Mo3S7Br6] (1) with tetrabromocatechol in the presence of Et3N, followed by the addition of Ph4PBr. Interaction of 2 with PPh3 leads to the conversion of the bridging disulphide ligands to the bridging sulphides, and (Ph4P)2[Mo3S4(TBC)3(thf)2]·0.5Et2O (3·0.5Et2O) was crystallized out of a THF/Et2O mixture. The main structural feature of 3 is unsymmetrical environment of the Mo3 core derived from the coordination of only two THF molecules per three metals.


Molybdenum Sulphur Redox-active ligands 


  1. 1.
    A. I. Poddel’sky, V. K. Cherkasov, and G. A. Abakumov (2009). Coord. Chem. Rev. 253, 291–324.CrossRefGoogle Scholar
  2. 2.
    W. Kaim (2011). Inorg. Chem. 50, 9752–9765.CrossRefGoogle Scholar
  3. 3.
    G. A. Abakumov, A. I. Poddelsky, E. V. Grunova, V. K. Cherkasov, G. K. Fukin, Y. A. Kurskii, and L. G. Abakumova (2005). Angew. Chem. Int. Ed. 44, 2767–2771.CrossRefGoogle Scholar
  4. 4.
    V. K. Cherkasov, G. A. Abakumov, E. V. Grunova, A. I. Poddelsky, G. K. Fukin, E. V. Baranov, Y. V. Kurskii, and L. G. Abakumova (2006). Chem. Eur. J. 12, 3916–3927.CrossRefGoogle Scholar
  5. 5.
    A. I. Poddel’sky, Y. A. Kurskii, A. V. Piskunov, N. V. Somov, V. K. Cherkasov, and G. A. Abakumov (2011). Appl. Organomet. Chem. 25, 180–189.CrossRefGoogle Scholar
  6. 6.
    E. V. Ilyakina, A. I. Poddel’sky, V. K. Cherkasov, and G. A. Abakumov (2012). Mendeleev Commun. 22, 208–210.CrossRefGoogle Scholar
  7. 7.
    A. V. Piskunov, M. S. Piskunova, and M. G. Chegerev (2014). Russ. Chem. Bull. 63, 912–915.CrossRefGoogle Scholar
  8. 8.
    A. V. Piskunov, I. V. Ershova, G. K. Fukin, and A. S. Shavyrin (2013). Inorg. Chem. Commun. 38, 127–130.CrossRefGoogle Scholar
  9. 9.
    A. V. Piskunov, I. N. Meshcheryakova, G. K. Fukin, A. S. Shavyrin, V. K. Cherkasov, and G. A. Abakumov (2013). Dalton Trans. 42, 10533–10539.CrossRefGoogle Scholar
  10. 10.
    V. Lyaskovskyy and B. de Bruin (2012). ACS Catal. 2, 270–279.CrossRefGoogle Scholar
  11. 11.
    C. G. Pierpont (2001). Coord. Chem. Rev. 216–217, 99–125.CrossRefGoogle Scholar
  12. 12.
    D. N. Hendrickson and C. G. Pierpont (2004). Top. Curr. Chem. 234, 63–95.CrossRefGoogle Scholar
  13. 13.
    R. Llusar and C. Vicent (2010). Coord. Chem. Rev. 254, 1534–1548.CrossRefGoogle Scholar
  14. 14.
    R. Llusar, S. Uriel, C. Vicent, J. M. Clemente-Juan, E. Coronado, C. J. Gómez-García, B. Braïda, and E. Canadell (2004). J. Am. Chem. Soc. 126, 12071–12083.CrossRefGoogle Scholar
  15. 15.
    J. M. Garriga, R. Llusar, S. Uriel, C. Vicent, A. J. Usher, N. T. Lucas, M. G. Humphrey, and M. Samoc (2003). Dalton Trans. 2003, 4546–4551.CrossRefGoogle Scholar
  16. 16.
    A. Alberola, R. Llusar, S. Triguero, C. Vicent, M. N. Sokolov, and C. J. Gómez-García (2007). J. Mater. Chem. 17, 3440–3450.CrossRefGoogle Scholar
  17. 17.
    R. Llusar, S. Triguero, V. Polo, C. Vicent, C. J. Gómez-García, O. Jeannin, and M. Fourmigue (2008). Inorg. Chem. 47, 9400–9409.CrossRefGoogle Scholar
  18. 18.
    A. L. Gushchin, R. Llusar, C. Vicent, P. A. Abramov, and C. J. Gómez-García (2013). Eur. J. Inorg. Chem. 2013, 2615–2622.CrossRefGoogle Scholar
  19. 19.
    D. Recatalá, R. Llusar, A. Barlow, G. Wang, M. Samoc, M. G. Humphrey, and A. L. Guschin (2015). Dalton Trans. 44, 13163–13172.CrossRefGoogle Scholar
  20. 20.
    L. R. Falvello, R. Llusar, S. Triguero, and C. Vicent (2009). Chem. Commun. 2009, 3440–3442.CrossRefGoogle Scholar
  21. 21.
    P. A. Petrov, M. Y. Afonin, D. Y. Naumov, S. N. Konchenko, and A. V. Piskunov (2015). Russ. J. Coord. Chem. 41, 31–36.CrossRefGoogle Scholar
  22. 22.
    T. Matsumoto, H. Yano, M. Wakizaka, A. Kobayashi, M. Kato, and H.-C. Chang (2015). Bull. Chem. Soc. Jpn 88, 74–83.CrossRefGoogle Scholar
  23. 23.
    V. P. Fedin and G. Sykes (1995). Inorg. Synth. 33, 162–170.Google Scholar
  24. 24.
    G. M. Sheldrick, SADABS, Program for Empirical X-Ray Absorption Correction (Bruker AXS Inc., Madison, WI, 1990–2010).Google Scholar
  25. 25.
    G. M. Sheldrick (2015). Acta Crystallogr. A 71, 3–8.CrossRefGoogle Scholar
  26. 26.
    H. Keck, W. Kuchen, J. Mathow, and H. Wunderlich (1982). Angew. Chem. Int. Ed. Engl. 21, 929–930.CrossRefGoogle Scholar
  27. 27.
    H. Wunderlich (1987). Acta Crystallogr. C 43, 24–26.CrossRefGoogle Scholar
  28. 28.
    J. Mizutani, H. Imoto, and T. Saito (1995). J. Cluster Sci. 6, 523–532.CrossRefGoogle Scholar
  29. 29.
    P. A. Petrov, G. A. Sosnin, D. Y. Naumov, and S. N. Konchenko (2015). J. Struct. Chem. 56, 765–768.CrossRefGoogle Scholar
  30. 30.
    P. A. Petrov, D. Y. Naumov, R. Llusar, C. J. Gómez-García, V. Polo, and S. N. Konchenko (2012). Dalton Trans. 41, 14031–14034.CrossRefGoogle Scholar
  31. 31.
    F. Estevan, M. Feliz, R. Llusar, J. A. Mata, and S. Uriel (2001). Polyhedron 20, 527–535.CrossRefGoogle Scholar
  32. 32.
    M. W. Lynch, M. Valentine, and D. N. Hendrickson (1982). J. Am. Chem. Soc. 104, 6982–6989.CrossRefGoogle Scholar
  33. 33.
    V. P. Fedin, M. N. Sokolov, Y. V. Mironov, B. A. Kolesov, S. V. Tkachev, and V. Y. Fedorov (1990). Inorg. Chim. Acta 167, 39–45.CrossRefGoogle Scholar
  34. 34.
    R. Llusar, S. Triguero, C. Vicent, M. N. Sokolov, B. Domercq, and M. Fourmigue (2005). Inorg. Chem. 44, 8937–8946.CrossRefGoogle Scholar
  35. 35.
    J. Christ, C. Epps, V. Pritchard, D. Schmeh, C. Pierpont, and E. Nordlander (2010). Inorg. Chem. 49, 2029–2031.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations