Advertisement

Journal of Cluster Science

, Volume 28, Issue 4, pp 2027–2040 | Cite as

Toxicity of Camellia sinensis-Fabricated Silver Nanoparticles on Invertebrate and Vertebrate Organisms: Morphological Abnormalities and DNA Damages

  • Balan Banumathi
  • Baskaralingam Vaseeharan
  • Periyakaruppan Suganya
  • Thavasimuthu Citarasu
  • Marimuthu Govindarajan
  • Naiyf S. Alharbi
  • Shine Kadaikunnan
  • Jamal M. Khaled
  • Giovanni Benelli
Original Paper

Abstract

Our understanding of nanoparticle toxicity and fate in the aquatic environment is still patchy. In the present study, the toxicity of silver nanoparticles coated by Camellia sinensis (Cs) leaf extract metabolites (Cs-AgNPs) was investigated in comparison with C. sinensis leaf extract and AgNO3 on a micro-crustacean, Ceriodaphnia cornuta, and a fish Poecilia reticulata. 100% mortality of C. cornuta was observed post-exposure to AgNO3 (40 µg/ml) if compared to the Cs leaf extract and Cs-AgNPs, showing 30 and 56% mortality at the same concentration, respectively. In P. reticulata 100% mortality was observed testing AgNO3 and Cs-AgNPs post-exposure to 1 and 30 µg/ml, respectively. Light microscopy and CLSM images showed the accumulation of nanoparticles in the intestine of C. cornuta treated with Cs-AgNPs at 40 µg/ml. In addition, histological observations confirmed the abnormal tissue texture in nanoparticle-exposed P. reticulata, if compared to control fishes. Furthermore, C. cornuta and P. reticulata treated with Cs-AgNPs showed DNA damages compared to the control. Overall, these findings indicated relevant limits about the employ of silver-based pesticides in the environment, and also pointed out the Cs-AgNPs were less toxic to C. cornuta and P. reticulata if compared to silver ions.

Keywords

Biosafety Ceriodaphnia cornuta Poecilia reticulata Ag nanoparticles DNA damage 

Notes

Acknowledgements

The authors extend their sincere appreciations to the Department of Biotechnology (DBT), New Delhi, India under the project grants code BT/PR7903/AAquote/3/638/2013. This Project was supported by King Saud University, Deanship of Scientific Research, College of Sciences Research Centre. BB gratefully acknowledges the UGC for grant of Rajiv Gandhi National Fellowship (Ref. No: F1-17.1/RGNF-2012-13-SC-TAM-23853).

References

  1. 1.
    J. Farkas, H. Peter, P. Christian, J. A. G. Urrea, M. Hassellov, J. Tuoriniemi, S. Gustafsson, E. Olsson, K. Hylland, and K. V. Thomas (2011). Environ. Int. 37, 1057–1062.CrossRefGoogle Scholar
  2. 2.
    J. S. Weis and P. Weis (1989). Rev. Aquat. Sci. 1, 45–73.Google Scholar
  3. 3.
    S. Asghari, S. A. Johari, J. H. Lee, Y. S. Kim, Y. B. Jeon, and H. J. Choi (2012). J. Nanobiotechnol. 10, 14.CrossRefGoogle Scholar
  4. 4.
    R. Govindasamy and A. A. Rahuman (2012). J. Environ. Sci. 24, 1091–1098.CrossRefGoogle Scholar
  5. 5.
    G. Benelli (2016). Parasitol. Res. 115, 23–34.CrossRefGoogle Scholar
  6. 6.
    G. Benelli (2016). Asia. Pacif. J. Trop. Biomed. 6, 353–354.CrossRefGoogle Scholar
  7. 7.
    M. Govindarajan, S. L. Hoti, and G. Benelli (2016). Enzyme. Microb. Tech. 95, 155–163.CrossRefGoogle Scholar
  8. 8.
    M. Govindarajan, M. Rajeswary, K. Veerakumar, U. Muthukumaran, S. L. Hoti, and G. Benelli (2016). Exp. Parasitol. 161, 40–47.CrossRefGoogle Scholar
  9. 9.
    H. F. Govindarajan, C. Panneerselvam Khater, and G. Benelli (2016). Res. Vet. Sci. 107, 95–101.CrossRefGoogle Scholar
  10. 10.
    M. Govindarajan, M. Nicoletti, and G. Benelli (2016). J. Clust. Sci. 27, 745–761.CrossRefGoogle Scholar
  11. 11.
    M. Govindarajan, M. Rajeswary, K. Veerakumar, S. L. Hoti, H. Mehlhorn, D. R. Barnard, and G. Benelli (2016). Parasitol. Res. 115, 723–733.CrossRefGoogle Scholar
  12. 12.
    M. Govindarajan, M. Rajeswary, S. L. Hoti, K. Murugan, K. Kovendan, S. Arivoli, and G. Benelli (2016). J. Asia. Pac. Entomol. 19, 51–58.CrossRefGoogle Scholar
  13. 13.
    M. Govindarajan, S. L. Hoti, M. Rajeswary, and G. Benelli (2016). Parasitol. Res. 115, 2685–2695.CrossRefGoogle Scholar
  14. 14.
    G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. 28, 3–10.CrossRefGoogle Scholar
  15. 15.
    S. S. Shankar, A. Ahmad, and M. Sastry (2003). Biotechnol. Prog. 19, 1627–1631.CrossRefGoogle Scholar
  16. 16.
    J. L. Gardea-Torresdey, E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani, and M. Jose-Yacaman (2003). Langmuir. 19, 1357–1361.CrossRefGoogle Scholar
  17. 17.
    D. Inbakandan, R. Venkatesan, and S. Ajmal Khan (2010). Colloid. Surface. B. 81, 634–639.CrossRefGoogle Scholar
  18. 18.
    J. Anarkali, D. Raj, K. Rajathi, and S. Sridhar (2012). Arch. Appl. Sci. Res. 4, 1436–1441.Google Scholar
  19. 19.
    B. Vaseeharan, C. G. Sargunar, Y. C. Lin, and J. C. Chen (2012). Nanotechnol. Develop. 2, e3.CrossRefGoogle Scholar
  20. 20.
    S. Saha, M. M. Malik, and M. S. Qureshi (2012). Int. J. Nanomater. Biostruct. 2, 1–4.Google Scholar
  21. 21.
    G. Benelli (2016). Enzyme. Microbial. Technol. 95, 58–68.CrossRefGoogle Scholar
  22. 22.
    C. Krishnaraj, E. G. Jagan, S. Rajasekar, P. Selvakumar, P. T. Kalaichelvan, and N. Mohan (2010). Colloids. Surf. B. 76, 50–56.CrossRefGoogle Scholar
  23. 23.
    A. Kanchana, I. Agarwal, S. Sunkar, J. Nellore, and K. Namasivayam (2011). Dig. J. Nanomater. Biostruct. 6, 1741–1750.Google Scholar
  24. 24.
    A. A. Zahir, A. Bagavan, C. Kamaraj, G. Elango, and A. A. Rahuman (2012). J. Biopest. 5, 95–102.Google Scholar
  25. 25.
    G. Alagumuthu and R. Kirubha (2012). Int. J. Nanomater. Biostruct. 2, 30–33.Google Scholar
  26. 26.
    R. Ishwarya, V. Baskaralingam, S. Sathappan, R. Subramani, M. Pitchaimani, D. Kannan, V. Sekar, and G. Benelli (2017). J. Clust. Sci. 28, 519–527.CrossRefGoogle Scholar
  27. 27.
    V. Gopinath, D. MubarakAli, S. Priyadarshini, N. M. Priyadharsshini, N. Thajuddin, and P. Velusamy (2012). Colloids. Surf. B. 96, 69–74.CrossRefGoogle Scholar
  28. 28.
    T. J. I. Edison and M. G. Sethuraman (2012). Process. Biochem. 47, 1351–1357.CrossRefGoogle Scholar
  29. 29.
    R. Geethalakshmi and D. V. L. Sarada (2012). Int. J. Nanomed. 7, 5375–5384.CrossRefGoogle Scholar
  30. 30.
    S. J. P. Jacob, J. S. Finub, and A. Narayanan (2012). Colloids. Surf. B. 91, 212–214.CrossRefGoogle Scholar
  31. 31.
    V. Gopinath, S. Priyadarshini, N. M. Priyadharshini, K. Pandian, and P. Velusamy (2013). Mater. Lett. 91, 224–227.CrossRefGoogle Scholar
  32. 32.
    C. Tamuly, M. Hazarikaa, S. C. H. Borah, M. R. Das, and M. P. Boruah (2013). Colloids Surf. B. 102, 627–634.CrossRefGoogle Scholar
  33. 33.
    M. Vijayakumar, K. Priya, F. T. Nancy, A. Noorlidah, and A. B. A. Ahmed (2013). Ind. Crops. Prod. 4, 235–240.CrossRefGoogle Scholar
  34. 34.
    P. Prakash, P. Gnanaprakasama, R. Emmanuel, S. Arokiyaraj, and M. Saravanan (2013). Colloids Surf. B. 108, 255–259.CrossRefGoogle Scholar
  35. 35.
    T. Y. Suman, S. R. R. Rajasree, A. Kanchana, and S. B. Elizabeth (2013). Colloids Surf. B. 106, 74–78.CrossRefGoogle Scholar
  36. 36.
    N. Muniyappan and N. S. Nagarajan (2014). Proc. Biochem. 49, 1054–1061.CrossRefGoogle Scholar
  37. 37.
    B. Ajitha, Y. A. K. Reddy, and P. S. Reddy (2014). Spectrochim. Acta. Part A. Mol. Biomol. Spectrosc. 121, 164–172.CrossRefGoogle Scholar
  38. 38.
    J. J. Antony, M. A. A. Sithika, T. A. Joseph, U. Suriyakalaa, A. Sankarganesh, D. Siva, S. Kalaiselvi, and S. Achiraman (2013). Colloids Surf. B. Biointerfaces. 108, 185–190.CrossRefGoogle Scholar
  39. 39.
    S. Ashokkumar, S. Ravi, V. Kathiravan, and S. Velmurugan (2014). Spectrochim. Acta. Part A. Mol. Biomol. Spectrosc. 121, 88–93.CrossRefGoogle Scholar
  40. 40.
    V. Kathiravan, S. Ravi, and S. Ashokkumar (2014). Spectrochim. Acta. Part A. Mol. Biomol. Spectrosc. 130, 116–121.CrossRefGoogle Scholar
  41. 41.
    M. Khan, S. T. Khan, M. Khan, S. F. Adil, J. Musarrat, A. A. Al-Khedhairy, and H. Z. Alkhathlan (2014). Int. J. Nanomed. 9, 3551–3565.Google Scholar
  42. 42.
    P. P. N. V. Kumar, S. V. N. Pammi, P. Kollu, K. V. V. Satyanarayana, and U. Shameem (2014). Ind. Crops. Prod. 52, 562–566.CrossRefGoogle Scholar
  43. 43.
    G. M. Nazeruddin, N. R. Prasad, S. R. Waghmare, K. M. Garadkar, and I. S. Mulla (2014). J. Alloys. Compd. 583, 272–277.CrossRefGoogle Scholar
  44. 44.
    C. K. Sathiya and S. Akilandeswari (2014). Spectrochim. Acta. Part A. Mol. Biomol. Spectrosc. 128, 337–341.CrossRefGoogle Scholar
  45. 45.
    B. Vaseeharan, P. Ramasamy, and J. C. Chen (2010). Lett. App. Microbiol. 50, 352–356.CrossRefGoogle Scholar
  46. 46.
    B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, R. Sudhakaran, N. Gobi, and G. Shanthini (2016). Biocatal. Agric. Biotechnol. 8, 189–196.Google Scholar
  47. 47.
    B. Ankamwar, M. Chaudhary, and M. Sastry (2005). Synth. React. Inorg. M. 35, 19–26.CrossRefGoogle Scholar
  48. 48.
    S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry (2006). Biotech. Prog. 22, 577–583.CrossRefGoogle Scholar
  49. 49.
    V. Deepak, P. S. Umamaheshwaran, K. Guhan, R. A. Nanthini, B. Krithiga, N. M. Hasika Jaithoon, and S. Gurunathan (2011). Colloids Surf. B. 86, 353–358.CrossRefGoogle Scholar
  50. 50.
    N. Taylor, R. J. M. Weber, A. D. Southam, T. G. Payne, O. Hrydziuszko, T. N. Arvanitis, and M. R. Viant (2009). Metabolomics. 5, 44–58.CrossRefGoogle Scholar
  51. 51.
    M. Yilmaz, A. Gul, and E. Karakose (2004). Chemosphere. 56, 375–380.CrossRefGoogle Scholar
  52. 52.
    M. Hamilton, R. C. Russo, and R. V. Thurston (1977). Environ. Sci. Technol. 11, 714–719.CrossRefGoogle Scholar
  53. 53.
    M. R. Bindhu and M. Umadevi (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 373–378.CrossRefGoogle Scholar
  54. 54.
    S. Lokina, A. Stephen, K. Venkatesan, A. Chinnasamy, and N. Vengidusamy (2014). Eur. J. Med. Chem. 76, 256–263.CrossRefGoogle Scholar
  55. 55.
    B. Ajitha, Y. A. K. Reddy, and P. S. Reddy (2015). J. Photochem. Photobiol. B. 146, 1–9.CrossRefGoogle Scholar
  56. 56.
    S. B. Lovern, J. R. Strickler, and R. Klaper (2007). Environ. Sci. Technol. l41, 4465–4470.CrossRefGoogle Scholar
  57. 57.
    X. Chen and H. J. Schluesener (2008). Toxicol. Lett. 176, 1–12.CrossRefGoogle Scholar
  58. 58.
    M. C. Stensberg, R. Madangopal, G. Yale, Q. Wei, H. Ochoa-Acuna, and A. Wei (2014). Nanotoxicol. 8, 833–842.CrossRefGoogle Scholar
  59. 59.
    B. M. Angel, G. E. Batley, C. V. Jarolimek, and N. J. Rogers (2013). Chemosphere. 93, 359–365.CrossRefGoogle Scholar
  60. 60.
    S. Shanthi, B. D. Jayaseelan, P. Velusamy, S. Vijayakumar, C. T. Chih, and B. Vaseeharan (2016). Microb. Pathog. 93, 70–77.CrossRefGoogle Scholar
  61. 61.
    L. C. Rainville, D. Carolan, A. C. Varela, H. Doyle, and D. Sheehan (2014). Analyst. 139, 1678–1686.CrossRefGoogle Scholar
  62. 62.
    A. Lopez-Serrano, R. Munoz-Olivas, J. Sanz-Landaluze, M. Olasagasti, S. Rainieri, and C. Camara (2014). Environ. Pollut. 191, 207–214.CrossRefGoogle Scholar
  63. 63.
    S. B. Lovern and R. Klaper (2006). Environ. Toxicol. Chem. 25, 1132–1137.CrossRefGoogle Scholar
  64. 64.
    C. M. Zhao and W. X. Wang (2011). Environ. Toxicol. Chem. 30, 885–892.CrossRefGoogle Scholar
  65. 65.
    C. M. Zhao and W. X. Wang (2012). Nanotoxico. l 6, 361–370.CrossRefGoogle Scholar
  66. 66.
    R. J. Griffitt, C. M. Lavelle, A. S. Kane, N. D. Denslow, and D. S. Barber (2013). Aquat. Toxicol. 130, 192–200.CrossRefGoogle Scholar
  67. 67.
    Y. Y. Wu, Y. Zhou, J. Guo, and J. Yuan (2010). Int. J. Chem. Eng. 7, 301–307.Google Scholar
  68. 68.
    U. Klueh, V. Wagner, S. Kelly, A. Johnson, and J. D. Bryers (2000). J. Biomed. Mater. Res. 53, 621–631.CrossRefGoogle Scholar
  69. 69.
    P. V. Asharani, Y. L. Wu, Z. Gong, and S. Valiyaveettil (2008). Nanotechnol 19, 1–8.CrossRefGoogle Scholar
  70. 70.
    M. M. El Mahdy, T. A. S. Eldin, H. S. Aly, F. F. Mohammeda, and M. I. Shaalan (2014). Exp. Toxicol. Pathol. 67, 21–29.CrossRefGoogle Scholar
  71. 71.
    S. Guilherme, I. Gaiva, M. A. Santos, and M. Pacheco (2012). Mutat. Res. 743, 1–9.CrossRefGoogle Scholar
  72. 72.
    M. Cavalcante, R. Martinez, and S. Sofia (2008). Mutat. Res. 655, 41–46.CrossRefGoogle Scholar
  73. 73.
    N. J. Reddy, D. N. Vali, M. Rani, and S. S. Rani (2014). Mater. Sci. Eng. C. 34, 115–122.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Balan Banumathi
    • 1
  • Baskaralingam Vaseeharan
    • 1
  • Periyakaruppan Suganya
    • 1
  • Thavasimuthu Citarasu
    • 2
  • Marimuthu Govindarajan
    • 3
  • Naiyf S. Alharbi
    • 4
  • Shine Kadaikunnan
    • 4
  • Jamal M. Khaled
    • 4
  • Giovanni Benelli
    • 5
  1. 1.Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and ManagementAlagappa UniversityKaraikudiIndia
  2. 2.Centre for Marine Science and TechnologyManonmaniam Sundaranar UniversityRajakkamangalam, KanyakumariIndia
  3. 3.Unit of Vector Control, Phytochemistry and Nanotechnology, Department of ZoologyAnnamalai UniversityAnnamalainagarIndia
  4. 4.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly

Personalised recommendations