Advertisement

Journal of Cluster Science

, Volume 28, Issue 4, pp 2075–2086 | Cite as

Synthesis of AucorePdshell Nanoparticles by a Green Chemistry Method and Characterization by HAADF-STEM Imaging

  • Eduardo A. Larios-Rodríguez
  • F. F. Castillón-Barraza
  • Ronaldo Herrera-Urbina
  • Ulises Santiago
  • Alvaro Posada-Amarillas
Original Paper

Abstract

In the present work, an environmentally friendly synthesis of inverted AucorePdshell nanoparticles and its detailed structural characterization are reported. Aberration corrected HAADF-STEM shows that the synthesized nanoparticles have a core–shell structure, where gold is localized in the core and palladium in the shell. Core size ranged from 15 to 35 nm, and the shell was about 2 nm, which means that ~11 monolayers of palladium are coating the gold core. EDS chemical analysis validates the presence of gold in the core and the formation of a palladium shell.

Keywords

HAADF-STEM Aberration corrected EDS Core–shell structure 

Notes

Acknowledgements

EALR and APA are grateful to CONACYT-México for financial support through Project 180424 and by grants from the National Center for Research Resources (5 G12RR013646-12) and the National Institute on Minority Health and Health Disparities (G12MD007591) NIH and the Welch Foundation (Grant No. AX-1615), FCB acknowledges for financial support to DGAPA-UNAM through a Grant IN106715.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. 1.
    T. Risse, S. Shaikhutdinov, N. Nilius, M. Sterrer, and H.-J. Freund (2008). Acc. Chem. Res. 41, 949.CrossRefGoogle Scholar
  2. 2.
    M. Haruta (2003). Chem. Rec. 3, 75.CrossRefGoogle Scholar
  3. 3.
    M. D. Hughes, Y. J. Yi-Jun Xu, P. Jenkins, P. McMorn, P. Landon, D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, E. H. Stitt, P. Johnston, K. Griffin, and C. J. Kiely (2005). Nature 437, 1132.CrossRefGoogle Scholar
  4. 4.
    A. S. K. Hashmi and G. J. Hutchings (2006). Angew. Chem. 45, 7896.CrossRefGoogle Scholar
  5. 5.
    A. A. Herzing, C. J. Kieley, A. F. Carley, P. Landom, and G. J. Hutching (2008). Science 321, 1331.CrossRefGoogle Scholar
  6. 6.
    A. Corma and P. Serna (2006). Science 213, 332.CrossRefGoogle Scholar
  7. 7.
    A. Corma, P. Serna, and H. Garcia (2007). J. Am. Chem. Soc. 129, 6358.CrossRefGoogle Scholar
  8. 8.
    G. J. Hutchings, M. S. Hall, A. F. Carley, P. Landon, B. E. Solsona, C. J. Kiely, A. Herzing, M. Makkee, J. A. Moulijn, A. Overweg, J. C. Fierro-Gonzalez, J. Guzman, and B. C. Gates (2006). J. Catal. 242, 71.CrossRefGoogle Scholar
  9. 9.
    J. Guzman, S. Carrettin, J. C. Fierro-Gonzalez, Y. Hao, B. C. Gates, and A. Corma (2005). Angew. Chem. 44, 4778.CrossRefGoogle Scholar
  10. 10.
    R. F. Heck and J. P. Nolley (1972). J. Org. Chem. 37, 2320.CrossRefGoogle Scholar
  11. 11.
    T. Mizoroki, K. Mori, and A. Ozaki (1971). Bull. Chem. Soc. Jap. 44, 581.CrossRefGoogle Scholar
  12. 12.
    N. Miyaura, K. Yamada, and A. Suzuki (1979). Tetrahedron Lett. 20, 3437.CrossRefGoogle Scholar
  13. 13.
    N. Miyaura and A. Suzuki (1995). Chem. Rev. 95, 2457.CrossRefGoogle Scholar
  14. 14.
    L. Yin and J. Liebscher (2007). Chem. Rev. 107, 133.CrossRefGoogle Scholar
  15. 15.
    A. Roglans, A. Pla-Quintana, and M. Moreno-Mañas (2006). Chem. Rev. 106, 4622.CrossRefGoogle Scholar
  16. 16.
    X. Gu (2011). X, Z-H. Lu, H-L. Jiang, T. Akita, Q. Xu. J. Am. Chem. Soc. 133, 1182.Google Scholar
  17. 17.
    H.-L. Jiang and Q. Xu (2011). J. Mater. Chem. 21, 13705.CrossRefGoogle Scholar
  18. 18.
    D. Wang and Y. Li (2011). Adv. Mater. 23, 1044.CrossRefGoogle Scholar
  19. 19.
    C.-H. Chen, L. S. Sarma, J.-M. Chen, S.-C. Shih, G.-R. Wang, D.-G. Liu, M.-T. Tang, J.-F. Lee, and B.-J. Hwang (2007). ACS Nano 1, 114.CrossRefGoogle Scholar
  20. 20.
    W. Hou, N. A. Dehm, W. J. Robert, and R. W. J. Scott (2008). J. Catal. 253, 22.CrossRefGoogle Scholar
  21. 21.
    M. Nutt, B. Hughes, and M. S. Wong (2005). Environ. Sci. Technol. 39, 1346.CrossRefGoogle Scholar
  22. 22.
    M. O. Nutt, K. N. Heck, P. Alvarez, and M. S. Wong (2006). Appl. Catal. B-Environ. 69, 115.CrossRefGoogle Scholar
  23. 23.
    J. L. C. Fajín, M. Natália, D. S. Cordeiro, and J. R. B. Gomes (2014). J. Phys. Chem. A 118, 5832.CrossRefGoogle Scholar
  24. 24.
    A. Staykov, D. Derekar, and K. Yamamura (2016). Int. J. Quantum Chem. 116, 1486.CrossRefGoogle Scholar
  25. 25.
    H. Zhang and N. Toshima (2014). Energy Environ. Focus 3, 210.Google Scholar
  26. 26.
    T. Epicier, K. Sato, F. Tournus, and T. Konno (2012). J. Nanopart. Res. 14, 1106.CrossRefGoogle Scholar
  27. 27.
    P. M. Voyles, D. A. Muller, J. L. Grazul, P. H. Citrin, and J. L. Gossmann (2012). Nature 416, 823.Google Scholar
  28. 28.
    J. M. LeBeau, S. D. Findlay, L. J. Allen, and S. Stemmer (2008). Phys. Rev. Lett. 100, 206101.CrossRefGoogle Scholar
  29. 29.
    J. M. LeBeau, S. D. Findlay, L. J. Allen, and S. Stemmer (2010). Nano Lett. 10, 4405.CrossRefGoogle Scholar
  30. 30.
    A. Spitale, M. A. Perez, S. Mejia-Rosales, M. J. Yacamán, and M. M. Mariscal (2015). Phys. Chem. Chem. Phys. 17, 28060.CrossRefGoogle Scholar
  31. 31.
    G. Kovacs, S. M. Kozlov, K. M. Neyman, J. Phys. Chem. C. doi: 10.1021/acs.jpcc.6b11923.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Eduardo A. Larios-Rodríguez
    • 1
    • 2
  • F. F. Castillón-Barraza
    • 3
  • Ronaldo Herrera-Urbina
    • 1
  • Ulises Santiago
    • 2
  • Alvaro Posada-Amarillas
    • 4
  1. 1.Departamento de Ingeniería Química y MetalurgiaUniversidad de SonoraHermosilloMexico
  2. 2.Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioUSA
  3. 3.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico
  4. 4.Departamento de Investigación En FísicaUniversidad de SonoraHermosilloMexico

Personalised recommendations