Advertisement

Journal of Cluster Science

, Volume 28, Issue 4, pp 1963–1979 | Cite as

Capping [H8−nNi42C8(CO)44]n− (n = 6, 7, 8) Octa-carbide Carbonyl Nanoclusters with [Ni(CO)] and [CuCl] Fragments

  • Cristiana Cesari
  • Iacopo Ciabatti
  • Cristina Femoni
  • Maria Carmela Iapalucci
  • Stefano Zacchini
Original Paper
  • 124 Downloads

Abstract

The reactions of [Ni16(C2)2(CO)23]4− and [Ni38C6(CO)42]6− with CuCl afforded mixtures of the previously reported [HNi42C8(CO)44(CuCl)]7− bimetallic octa-carbide cluster and the new [HNi43C8(CO)45]7− and [HNi44C8(CO)46]7− homo-metallic octa-carbides. The three species have very similar properties resulting always in co-crystals such as [NMe4]7[HNi42+2xC8(CO)44+2x(CuCl)1−x]·6.5MeCN (x = 0.14) (86% [HNi42C8(CO)44(CuCl)]7−, 14%[HNi43C8(CO)45]7−/[HNi44C8(CO)46]7−) and [NMe4]7[HNi42+2xC8(CO)44+2x(CuCl)1−x]·5.5MeCN (x = 0.30) (70% [HNi42C8(CO)44(CuCl)]7−, 30% [HNi43C8(CO)45]7−/[HNi44C8(CO)46]7−). The new homo-metallic octa-carbides can be obtained free from the Ni–Cu octa-carbido cluster by reacting [Ni10(C2)(CO)16]2− in thf with a stoichiometric amount of CuCl, and crystals of [NMe4]6[H2Ni43+xC8(CO)45+x]·6MeCN (x = 0.72), which contain [H2Ni44C8(CO)46]6− (72%) and [H2Ni43C8(CO)45]6− (28%), have been obtained. Despite the different charges and compositions, these anions display almost identical structures, which are also closely related to those previously reported for the bimetallic Ni–Cd octa-carbido clusters [Ni42+xC8(CO)44+x(CdCl)]7− and [HNi42+xC8(CO)44+x(CdBr)]6−. Indeed, all these clusters are based on the same Ni42C8 cage decorated by miscellaneous [CdX]+ (X = Cl, Br), [CuCl] and [Ni(CO)] fragments.

Keywords

Cluster compound Carbonyl ligand Structure elucidation Nickel Carbide 

References

  1. 1.
    D. M. P. Mingos and D. J. Wales Introduction to cluster Chemistry (Prentice Hall, Englewood Cliffs, 1990).Google Scholar
  2. 2.
    P. Braunstein, L. A. Oro and P. R. Raithby (eds.) Metal Clusters in Chemistry (Wiley, New York, 1999).Google Scholar
  3. 3.
    P. R. Raithby (1998). Platin. Met. Rev. 42, 146.Google Scholar
  4. 4.
    J. Zank, A. Schier, and H. Schmidbaur (1998). Dalton Trans. 323.Google Scholar
  5. 5.
    J. W. Lauher and K. Wald (1981). J. Am. Chem. Soc. 103, 7648.CrossRefGoogle Scholar
  6. 6.
    P. Braunstein, J. Rosé, Y. Dusausoy, and J.-P. Mangeot (1982). C. R. Chim. 294, 967.Google Scholar
  7. 7.
    X. Li, B. Kiran, and L.-S. Wang (2005). J. Phys. Chem. A 109, 4366.CrossRefGoogle Scholar
  8. 8.
    R. Hoffmann (1982). Angew. Chem. Int. Ed. 21, 711.CrossRefGoogle Scholar
  9. 9.
    D. M. P. Mingos (1984). Gold Bull. 17, 5.CrossRefGoogle Scholar
  10. 10.
    P. Braunstein and J. Rosé (1985). Gold Bull. 18, 17.CrossRefGoogle Scholar
  11. 11.
    M. D. Vargas and J. N. Nicholls (1986). Adv. Inorg. Chem. Radiochem. 30, 123.CrossRefGoogle Scholar
  12. 12.
    I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, and S. Zacchini (2015). Inorg. Chim. Acta 428, 203.CrossRefGoogle Scholar
  13. 13.
    M. Bortoluzzi, I. Ciabatti, C. Femoni, T. Funaioli, M. Hayatifar, M. C. Iapalucci, G. Longoni, and S. Zacchini (2014). Dalton Trans. 43, 9633.CrossRefGoogle Scholar
  14. 14.
    I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, A. Ienco, G. Longoni, G. Manca, and S. Zacchini (2014). Inorg. Chem. 53, 9761.CrossRefGoogle Scholar
  15. 15.
    M. Bortoluzzi, I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, G. Longoni, and S. Zacchini (2014). Angew. Chem. Int. Ed. 53, 7233.CrossRefGoogle Scholar
  16. 16.
    M. Bortoluzzi, C. Cesari, I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, R. Mazzoni, and S. Zacchini (2017). J. Clust. Sci. 28, 703.CrossRefGoogle Scholar
  17. 17.
    I. Ciabatti, C. Femoni, M. C. Iapalucci, A. Ienco, G. Longoni, G. Manca, and S. Zacchini (2013). Dalton Trans. 52, 10559.Google Scholar
  18. 18.
    M. Bortoluzzi, I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, G. Longoni, and S. Zacchini (2014). Dalton Trans. 43, 13471.CrossRefGoogle Scholar
  19. 19.
    C. Femoni, F. Kaswalder, M. C. Iapalucci, G. Longoni, and S. Zacchini (2006). Coord. Chem. Rev. 250, 1580.CrossRefGoogle Scholar
  20. 20.
    S. Zacchini (2011). Eur. J. Inorg. Chem. 4125.Google Scholar
  21. 21.
    A. Ceriotti, G. Piro, G. Longoni, M. Manassero, N. Masciocchi, and M. Sansoni (1988). New J. Chem. 12, 501.Google Scholar
  22. 22.
    A. Ceriotti, G. Longoni, M. Manassero, M. Perego, and M. Sansoni (1985). Inorg. Chem. 24, 117.CrossRefGoogle Scholar
  23. 23.
    A. Ceriotti, A. Fait, G. Longoni, G. Piro, L. Resconi, F. Demartin, M. Manassero, N. Masciocchi, and M. Sansoni (1986). J. Am. Chem. Soc. 108, 5370.CrossRefGoogle Scholar
  24. 24.
    F. Calderoni, F. Demartin, F. Fabrizi de Biani, C. Femoni, M. C. Iapalucci, G. Longoni, and P. Zanello (1999). Eur. J. Inorg. Chem. 663.Google Scholar
  25. 25.
    A. Ceriotti, A. Fait, G. Longoni, G. Piro, F. Demartin, M. Manassero, N. Masciocchi, and M. Sansoni (1986). J. Am. Chem. Soc. 108, 8091.CrossRefGoogle Scholar
  26. 26.
    A. F. Masters and J. T. Meyer (1995). Polyehdron 14, 339.CrossRefGoogle Scholar
  27. 27.
    J. K. Battie, A. F. Masters, and J. T. Meyer (1995). Polyhedron 14, 829.CrossRefGoogle Scholar
  28. 28.
    C. Femoni, M. C. Iapalucci, G. Longoni, and S. Zacchini (2010). Eur. J. Inorg. Chem. 1056.Google Scholar
  29. 29.
    C. Femoni, M. C. Iapalucci, G. Longoni, S. Zacchini, S. Fedi, and F. Fabrizi de Biani (2012). Dalton Trans. 41, 4649.CrossRefGoogle Scholar
  30. 30.
    A. Bernardi, C. Femoni, M. C. Iapalucci, G. Longoni, F. Ranuzzi, S. Zacchini, P. Zanello, and S. Fedi (2008). Chem. Eur. J. 14, 1924.CrossRefGoogle Scholar
  31. 31.
    A. Bernardi, C. Femoni, M. C. Iapalucci, G. Longoni, and S. Zacchini (2009). Inorg. Chim. Acta 362, 1239.CrossRefGoogle Scholar
  32. 32.
    A. Bernardi, I. Ciabatti, C. Femoni, M. C. Iapalucci, G. Longoni, and S. Zacchini (2013). Dalton Trans. 42, 407.CrossRefGoogle Scholar
  33. 33.
    A. Bernardi, C. Femoni, M. C. Iapalucci, G. Longoni, S. Zacchini, S. Fedi, and P. Zanello (2010). Eur. J. Inorg. Chem. 4831.Google Scholar
  34. 34.
    A. Bernardi, I. Ciabatti, C. Femoni, M. C. Iapalucci, G. Longoni, and S. Zacchini (2016). J. Organomet. Chem. 812, 229.CrossRefGoogle Scholar
  35. 35.
    I. Ciabatti, C. Femoni, M. Gaboardi, M. C. Iapalucci, G. Longoni, D. Pontiroli, M. Riccò, and S. Zacchini (2014). Dalton Trans. 43, 4388.CrossRefGoogle Scholar
  36. 36.
    I. Ciabatti, F. Fabrizi de Biani, C. Femoni, M. C. Iapalucci, G. Longoni, and S. Zacchini (2013). ChemPlusChem. 78, 1456.CrossRefGoogle Scholar
  37. 37.
    I. Ciabatti, F. Fabrizi de Biani, C. Femoni, M. C. Iapalucci, G. Longoni, and S. Zacchini (2013). Dalton Trans. 42, 9662.CrossRefGoogle Scholar
  38. 38.
    I. Ciabatti, C. Femoni, M. C. Iapalucci, G. Longoni, and S. Zacchini (2012). Organometallics 31, 4593.CrossRefGoogle Scholar
  39. 39.
    B. F. G. Johnson and C. M. Martin in P. Braunstein, L. A. Oro, and P. R. Raithby (eds.), Metal Clusters in Chemistry (Wiley, Weinheim, 1999), p. 877.CrossRefGoogle Scholar
  40. 40.
    K. Hughes and K. Wade (2000). Coord. Chem. Rev. 197, 191.CrossRefGoogle Scholar
  41. 41.
    S. Takemoto and H. Matsuzaka (2012). Coord. Chem. Rev. 256, 574.CrossRefGoogle Scholar
  42. 42.
    R. B. King (1988). New J. Chem. 12, 49.Google Scholar
  43. 43.
    J. F. Halet, D. G. Evans, and D. M. P. Mingos (1998). J. Am. Chem. Soc. 110, 87.CrossRefGoogle Scholar
  44. 44.
    P. J. Dyson (2004). Adv. Organomet. Chem. 43, 179.Google Scholar
  45. 45.
    R. D. Adams and B. Captain (2004). J. Organomet. Chem. 689, 4521.CrossRefGoogle Scholar
  46. 46.
    V. Yempally, L. Zhu, and B. Captain (2009). J. Clust. Sci. 20, 695.CrossRefGoogle Scholar
  47. 47.
    R. D. Adams, B. Captain, P. J. Pellechia, and L. Zhu (2004). Inorg. Chem. 43, 7243.CrossRefGoogle Scholar
  48. 48.
    R. D. Adams, B. Captain, W. Fu, P. J. Pellechia, and M. D. Smith (2002). Angew. Chem. Int. Ed. 41, 1951.CrossRefGoogle Scholar
  49. 49.
    I. Ciabatti, C. Femoni, T. Funaioli, M. C. Iapalucci, S. Merighi, and S. Zacchini (2017). J. Organomet. Chem.. doi: 10.1016/j.jorganchem.2017.01.029.Google Scholar
  50. 50.
    A.-C. Dupuis (2005). Progr. Mater. Sci. 50, 929.CrossRefGoogle Scholar
  51. 51.
    C. Ducati, I. Alexandrou, M. Chhowalla, J. Robertson, and G. A. J. Amaratunga (2004). J. Appl. Phys. 95, 6387.CrossRefGoogle Scholar
  52. 52.
    W. Wunderlich (2007). Diam. Relat. Mater. 16, 369.CrossRefGoogle Scholar
  53. 53.
    M. Moors, H. Amara, T. V. de Bocarmé, C. Bichara, F. Ducastelle, N. Krause, and J. C. Chalier (2009). ACS Nano 3, 511.CrossRefGoogle Scholar
  54. 54.
    J. Lahiri, T. Miller, L. Adamska, I. I. Oleynik, and M. Batzill (2011). Nano Lett. 11, 518.CrossRefGoogle Scholar
  55. 55.
    K. J. Kim, W.-R. Yu, J. H. Youk, and J. Lee (2012). Phys. Chem. Chem. Phys. 14, 14041.CrossRefGoogle Scholar
  56. 56.
    C. Femoni, M. C. Iapalucci, G. Longoni, and S. Zacchini (2008). Chem. Commun. 3157.Google Scholar
  57. 57.
    R. Jin, C. Zeng, M. Zhou, and Y. Chen (2016). Chem. Rev. 116, 10346.CrossRefGoogle Scholar
  58. 58.
    H. Qian, M. Zhu, Z. Wu, and R. Jin (2012). Acc. Chem. Res. 45, 1470.CrossRefGoogle Scholar
  59. 59.
    R. Jin (2015). Nanoscale 7, 1549.CrossRefGoogle Scholar
  60. 60.
    P. Serna and B. C. Gates (2014). Acc. Chem. Res. 47, 2612.CrossRefGoogle Scholar
  61. 61.
    C. Li and W. K. Leong (2008). J. Colloid Interface Sci. 328, 29.CrossRefGoogle Scholar
  62. 62.
    G. Schmid and D. Fenske (2010). Philos. Trans. R. Soc. A 368, 1207.CrossRefGoogle Scholar
  63. 63.
    G. Hogarth, S. E. Kabir, and E. Nordlander (2010). Dalton Trans. 39, 6153.CrossRefGoogle Scholar
  64. 64.
    E. Cattabriga, I. Ciabatti, C. Femoni, T. Funaioli, M. C. Iaplaucci, and S. Zacchini (2016). Inorg. Chem. 55, 6068.CrossRefGoogle Scholar
  65. 65.
    E. G. Mednikov and L. F. Dahl (2010). Philos. Trans. R. Soc. A 368, 1301.CrossRefGoogle Scholar
  66. 66.
    R. Jin (2010). Nanoscale 2, 343.CrossRefGoogle Scholar
  67. 67.
    J. F. Parker, C. A. Fileds-Zinna, and R. W. Murray (2010). Acc. Chem. Res. 43, 1289.CrossRefGoogle Scholar
  68. 68.
    I. Ciabatti, C. Femoni, M. C. Iapalucci, G. Longoni, and S. Zacchini (2012). Nanoscale 4, 4166.CrossRefGoogle Scholar
  69. 69.
    A. Ceriotti, G. Longoni, L. Resconi, M. Manassero, N. Masciocchi, and M. Sansoni (1985). Chem. Commun. 181.Google Scholar
  70. 70.
    E. Keller SCHAKAL99 (University of Freiburg, Germany, 1999).Google Scholar
  71. 71.
    G. M. Sheldrick (1996). SADABS, Program for Empirical Absorption Correction, University of Göttingen, Germany.Google Scholar
  72. 72.
    G. M. Sheldrick (1997). SHELX97, Program for Crystal Structure Determination, University of Göttingen, Germany.Google Scholar
  73. 73.
    A. L. Spek PLATON, A Multipurpose Crystallographic Tool (Utrecht University, Utrecht, The Netherlands, 2005).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Cristiana Cesari
    • 1
  • Iacopo Ciabatti
    • 1
  • Cristina Femoni
    • 1
  • Maria Carmela Iapalucci
    • 1
  • Stefano Zacchini
    • 1
  1. 1.Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaBolognaItaly

Personalised recommendations