Journal of Cluster Science

, Volume 28, Issue 4, pp 1995–2003 | Cite as

Structure and Stability of Gold Nanoparticles Synthesized Using Schinus molle L. Extract

Original Paper

Abstract

In this work, we exhibited the results of the green synthesis of gold nanoparticles by aqueous extract of Schinus molle L. leaves. The chemical reaction was carried out by varying the plant extract/precursor salt ratio concentration in the aqueous solution. The structural characterization of the nanoparticles was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD analysis showed that the as-synthesized AuNPs have a face-centered cubic structure. SEM and TEM observations indicated that most of the obtained particles have multiple twinning structures (MTP). The synthesized Au-MTP have particle sizes in the range of 10–60 nm, most of them with an average size of about 24 nm. However, triangular Au plate particles were also obtained, having an average size of 180 nm. Fourier transforms infrared spectroscopy and shows that the functional groups responsible for the chemical reduction of AuNPs are phenolic compounds present in the S. molle L. leaf.

Keywords

Gold nanoparticles Biosynthesis Schinus molle Structural characterization Electron microscopy 

References

  1. 1.
    I. Hussain, N. B. Singh, A. Singh, H. Singh, and S. C. Singh (2016). Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38, 545–560.CrossRefGoogle Scholar
  2. 2.
    J. E. Hutchison (2008). Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. Acs. Nano 2, 395–402.CrossRefGoogle Scholar
  3. 3.
    A. Feurtet-Mazel, S. Mornet, L. Charron, N. Mesmer-Dudons, R. Maury-Brachet, and M. Baudrimont (2016). Biosynthesis of gold nanoparticles by the living freshwater diatom Eolimna minima, a species developed in river biofilms. Environ. Sci. Pollut. Res. 23, 4334–4339.CrossRefGoogle Scholar
  4. 4.
    M. S. Nejad, M. Khatami, and G. H. S. Bonjar (2016). Extracellular synthesis gold nanotriangles using biomass of Streptomyces microflavus. IET. Nanobiotechnol. 10, 33–38.CrossRefGoogle Scholar
  5. 5.
    M. Noruzi (2015). Biosynthesis of gold nanoparticles using plant extracts. Bioproc. Biosyst. Eng. 38, 1–14.CrossRefGoogle Scholar
  6. 6.
    T. N. J. I. Edison, Y. R. Lee, and M. G. Sethuraman (2016). Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochim. Acta A 161, 122–129.CrossRefGoogle Scholar
  7. 7.
    G. Sathishkumar, K. J. Pradeep, V. Vignesh, C. Rajkuberan, M. Jeyaraj, M. Selvakumar, J. Rakhi, and S. Sivaramakrishnan (2016). Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. J. Mol. Liq. 215, 229–236.CrossRefGoogle Scholar
  8. 8.
    V. Ravichandran, S. Vasanthi, S. Shalini, S. A. Ali Shah, and R. Harish (2016). Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater. Lett. 180, 264–267.CrossRefGoogle Scholar
  9. 9.
    B. Paul, B. Bhuyan, D. D. Purkayastha, M. Dey, and S. S. Dhar (2015). Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater. Lett. 148, 37–40.CrossRefGoogle Scholar
  10. 10.
    A. K. Mittal, Y. Chisti, and U. C. Banerjee (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356.CrossRefGoogle Scholar
  11. 11.
    V. Kumar and S. K. Yadav (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 84, 151–157.CrossRefGoogle Scholar
  12. 12.
    E. A. Hayouni, I. Chraief, M. Abedrabba, M. Bouix, J.-Y. Leveau, H. Mohammed, and M. Hamdi (2008). Tunisian Salvia officinalis L. and Schinus molle L. essential oils: their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int. J. Food Microbiol. 125, 242–251.CrossRefGoogle Scholar
  13. 13.
    G. Mie (1908). Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. 25, 377–445.CrossRefGoogle Scholar
  14. 14.
    P. Mulvaney (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, (3), 788–800.CrossRefGoogle Scholar
  15. 15.
    J. Yu, D. Xu, H. N. Guan, C. Wang, and L. K. Huang (2016). Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater. Lett. 166, 110–112.CrossRefGoogle Scholar
  16. 16.
    S. K. Das, C. Dickinson, F. Lafir, D. F. Brougham, and E. Marsili (2012). Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 14, (5), 1322–1334.CrossRefGoogle Scholar
  17. 17.
    M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán (2008). Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783–1791.CrossRefGoogle Scholar
  18. 18.
    V. Karthick, V. G. Kumar, T. S. Dhas, K. Govindaraju, S. Sinha, and G. Singaravelu (2015). Biosynthesis of gold nanoparticles and identification of capping agent using gas chromatography-mass spectrometry and matrix assisted laser desorption ionization-mass spectrometry. J. Nanosci. Nanotechnol. 15, (6), 4052–4057.CrossRefGoogle Scholar
  19. 19.
    R. Esparza, J. Ascencio, G. Rosas, J. F. Sánchez Ramírez, U. Pal, and R. Perez (2005). Structure, stability and catalytic activity of chemically synthesized Pt, Au, and Au–Pt nanoparticles. J. Nanosci. Nanotechnol. 5, 641–647.CrossRefGoogle Scholar
  20. 20.
    R. Esparza, G. Rosas, M. L. Fuentes, J. S. Ramírez, U. Pal, J. Ascencio, and R. Pérez (2007). Synthesis of gold nanoparticles with different atomistic structural characteristics. Mater. Charact. 58, 694–700.CrossRefGoogle Scholar
  21. 21.
    E. Pretsch, P. Bühlmann, C. Affolter, E. Pretsch, P. Bhuhlmann, C. Affolter, Structure Determination of Organic Compounds (Springer, Berlin, 2009).Google Scholar
  22. 22.
    H. Lallawmawma, G. Sathishkumar, S. Sarathbabu, S. Ghatak, S. Sivaramakrishnan, G. Gurusubramanian, and N. S. Kumar (2015). Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ. Sci. Pollut. Res. 22, 17753–17768.CrossRefGoogle Scholar
  23. 23.
    V. G. Kumar, S. D. Gokavarapu, A. Rajeswari, T. S. Dhas, V. Karthick, Z. Kapadia, and S. Sinha (2011). Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloid Surf. B 87, (1), 159–163.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Metalurgia y MaterialesUMSNHMorelia MichoacánMexico

Personalised recommendations