Journal of Cluster Science

, Volume 28, Issue 4, pp 2017–2026 | Cite as

A Novel Green Synthesis of Silver Nanoparticles Using Rubus crataegifolius Bge Fruit Extract

  • Ashish A. Rokade
  • Jong Hwa Kim
  • Se Ri Lim
  • Seong Il Yoo
  • Young Eup Jin
  • Seong Soo Park
Original Paper


We report a facile, cost effective, and environmentally friendly green chemistry method for preparing silver nanoparticles (AgNPs) using Rubus crataegifolius bge (RCB) fruit extract. The amount of the fruit extract used was found to be important parameters in the growth of AgNPs. In this study, the effect of RCB fruit extract on the synthesis of AgNPs was studied using UV–Vis spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), and dynamic light scattering analyses were performed to characterize the RCB fruit extract-stabilized AgNPs. The formation of the AgNPs was confirmed by the color change of the reaction medium and the absorbance peak observed at 420 nm. The XRD analysis confirmed the face centered cubic structure of the AgNPs. The catalytic property of the as-synthesized AgNPs was analyzed for the reduction of 4-nitrophenol to 4-aminophenol.


Ag nanoparticles Green synthesis Catalysis 4-Nitrophenol 



This work was supported by the Technological R&D Program of SMBA (C0405639) and R&D Program of Ministry of Trade, Industry and Energy (10049521).


  1. 1.
    A. Dawson and P. V. Kamat (2001). J. Phys. Chem. B 105, 960–966.CrossRefGoogle Scholar
  2. 2.
    P. K. Jain, X. Huang, I. H. El-Sayed, T. Balakrishna, and R. Ramanibai (2008). Acc. Chem. Res. 41, 1578–1586.CrossRefGoogle Scholar
  3. 3.
    G. Markovich, C. Patrick Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath (1999). Acc. Chem. Res 32, 415–423.CrossRefGoogle Scholar
  4. 4.
    X. Du, J. He, J. Zhu, L. Sun, and S. An (2012). Appl. Surf. Sci. 258, 2717–2723.CrossRefGoogle Scholar
  5. 5.
    P. Lui and M. Zhao (2009). Appl. Surf. Sci. 7, (255), 3989–3993.Google Scholar
  6. 6.
    R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharyya, and P. Mukherjee (2012). Chem. Soc. Rev. 41, 2943–2970.CrossRefGoogle Scholar
  7. 7.
    C. N. R. Rao, H. S. S. R. Matte, R. Voggu, and A. Govindaraj (2012). Dalton Trans. 41, 5089–5120.CrossRefGoogle Scholar
  8. 8.
    M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Morgan, Q. Zhang, D. Qin, and Y. Xia (2011). Chem. Rev. 111, 3669–3721.CrossRefGoogle Scholar
  9. 9.
    R. Jin, Y. Cao, C. Mirkin, K. Kelly, G. Schatz, and J. Zheng (2001). Science 294, 1901–1903.CrossRefGoogle Scholar
  10. 10.
    R. Jin, Y. Cao, K. Kelly, G. Schatz, J. Zheng, and C. Mirkin (2003). Nature 425, 487–490.CrossRefGoogle Scholar
  11. 11.
    Y. Sun (2007). Chem. Mater. 19, 5845–5847.CrossRefGoogle Scholar
  12. 12.
    L. Jiang, S. Xu, J. Zhu, J. Zhang, J. Zhu, and H. Chen (2004). Inorg. Chem. 43, 5877–5883.CrossRefGoogle Scholar
  13. 13.
    M. H. Kim, S. K. Kwak, S. H. Im, J. B. Lee, K. Y. Choi, and D. J. Byun (2014). J. Mater. Chem. C 2, 6165–6170.CrossRefGoogle Scholar
  14. 14.
    R. S. Verma (2012). Curr. Opin. Chem. Eng. 1, 123–128.CrossRefGoogle Scholar
  15. 15.
    A. A. Hebeish, M. H. El-Rafie, F. A. Abdel-Mohdy, E. S. Abdel-Halim, and H. E. Emam (2010). Carbohydr. Polym 82, 933–941.CrossRefGoogle Scholar
  16. 16.
    B. Liu, X. Li, C. Zheng, X. Wang, and R. Sun (2013). Nanotechnology 24, 235601–235609.CrossRefGoogle Scholar
  17. 17.
    A. R. Silva and G. Unali (2011). Nanotechnology 22, 315605–315610.CrossRefGoogle Scholar
  18. 18.
    P. Raveendran, J. Fu, and S. L. Wallen (2003). J. Am. Chem. Soc. 125, 13940–13941.CrossRefGoogle Scholar
  19. 19.
    V. Kathiravan, S. Ravi, and S. Ashokkumar (2014). Spectrochim Acta Part A 130, 116–121.CrossRefGoogle Scholar
  20. 20.
    Y. Gao, Q. Huang, Q. Su, and R. Liu (2014). Spectrosc. Lett. 47, 790–795.CrossRefGoogle Scholar
  21. 21.
    M. Zargar, K. Shameli, G. R. Najafi, and F. Farahani (2014). J. Ind. Eng. Chem. 20, 4169–4175.CrossRefGoogle Scholar
  22. 22.
    A. Saxena, R. M. Tripathi, F. Zafar, and P. Singh (2012). Mater. Lett 67, 91–94.CrossRefGoogle Scholar
  23. 23.
    M. S. Abdel-Aziz, M. S. Shaheen, A. A. El-Nekeety, and M. A. Abdel-wahhab (2014). J. Saudi Chem. Soc. 18, 356–363.CrossRefGoogle Scholar
  24. 24.
    M. P. Patil, A. A. Rokade, D. Ngabire, and G. D. Kim (2016). J. Clust. Sci. 27, 1737–1750.CrossRefGoogle Scholar
  25. 25.
    E. Murugan and J. N. Jebaranjitham (2012). J. Mol. Catal. A 365, 128–135.CrossRefGoogle Scholar
  26. 26.
    Chinese Academy of Science China Flora Editorial Board Traditional Chinese Medicine Flora (Science Press, Beijing, 1981), p. 117.Google Scholar
  27. 27.
    K. M. Moon, J. E. Kim, H. Y. Kim, J. S. Lee, G. A. Son, S. W. Nam, B. W. Kim, and J. H. Lee (2011). J. Life Sci. 9, 1214.CrossRefGoogle Scholar
  28. 28.
    J. Huang, S. Vongehr, S. Tang, H. Lu, and X. Meng (2010). J. Phys. Chem. C 114, 15005–150010.CrossRefGoogle Scholar
  29. 29.
    H. Zhang, X. Li, and G. Chen (2009). J. Mater. Chem. 19, 8223–8231.CrossRefGoogle Scholar
  30. 30.
    Y. Du, H. Chen, and N. Xu (2004). Appl. Catal. A. 277, 259–264.CrossRefGoogle Scholar
  31. 31.
    Y. Chen, J. Qiu, X. Wang, and J. Siu (2006). J. Catal 242, 227–230.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ashish A. Rokade
    • 1
  • Jong Hwa Kim
    • 1
  • Se Ri Lim
    • 1
  • Seong Il Yoo
    • 2
  • Young Eup Jin
    • 1
  • Seong Soo Park
    • 1
  1. 1.Department of Industrial ChemistryPukyong National UniversityBusanKorea
  2. 2.Department of Polymer EngineeringPukyong National UniversityBusanKorea

Personalised recommendations