Journal of Cluster Science

, Volume 28, Issue 4, pp 1981–1993 | Cite as

Size Reduction of Bulk Alumina for Mass Production of Fluorescent Nanoalumina by Fungus Humicola sp.

  • Sana Moeez
  • Ejaz Ahmad Siddiqui
  • Shadab Khan
  • Absar Ahmad
Original Paper


In recent years, nanomaterials have made their way into hundreds of biomedical, life-sciences and technological applications. One such nanomaterial of extreme importance is nanoalumina (Al2O3 nanoparticles). This nanomaterial is an epitome of diversity with applications exhibited in the fields of catalysis, cosmetics, theranostics, energy generation, biosensors, drug-delivery, tumor-regression, etc. However, problems persist in terms of biocompatibility, cost-effectiveness, reproducibility and mass-production of nanoalumina by the presently existent physical, chemical and biological methodologies. Herein, we for the first time are presenting a top-down biofabrication method by which size reduction of commercial bulk alumina/aluminum oxide (5 µm) into nanoalumina (5–25 nm) is carried out by a thermophilic fungus Humicola sp. within 96 h of reaction at just 50 °C. The so-formed nanoalumina is highly stable, water dispersible, fluorescent and natural protein capped; characterization engaged standard techniques. These nanoparticles exhibit anti-bacterial properties against Gram-positive Bacillus subtilis strain and may serve as broad spectrum bactericidal agents. We believe that our novel top-down approach may be extensively used in the facile, inexpensive, eco-friendly and reliable fabrication of abundant quantities of nanomaterials of different chemical compositions, sizes and shapes with better control and predictability over the properties as derived from their substrates. The mechanistic aspect of said protocol is underway.


Alumina Nanoalumina Biocompatibility Reproducibility Mass production Fluorescent Bactericidal 



SM thanks the UGC, New Delhi for Maulana Azad National Fellowship (MANF) and AcSIR, New Delhi. AA thanks the Department of Biotechnology, Government of India (New Delhi) for the Tata Innovation Fellowship award and financial support through BSC0112 CSIR. The authors thank Centre for Materials Characterization (CSIR-NCL) for assistance regarding TEM and XRD measurements.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest amongst them.


  1. 1.
    A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242.CrossRefGoogle Scholar
  2. 2.
    Z. Yang, Z. Li, M. Xu, Y. Ma, Y. Su, F. Gao, H. Wei, and L. Zhang (2013). Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett. 5, 247–259.CrossRefGoogle Scholar
  3. 3.
    R. Gopikrishnan, K. Zhang, P. Ravichandran, S. Baluchamy, V. Ramesh, S. Biradar, P. Ramesh, J. Pradhan, J. C. Hall, A. K. Pradhan, and G. T. Ramesh (2010). Synthesis, characterization and biocompatibility studies of zinc oxide (ZnO) nanorods for biomedical application. Nano-Micro Lett. 2, 31–36.CrossRefGoogle Scholar
  4. 4.
    X. Wang, H. Zhang, H. Jing, and L. Cui (2015). Highly efficient labelling of human lung cancer cells using cationic poly-l-lysine-assisted magnetic iron oxide nanoparticles. Nano-Micro Lett. 7, 374–384.CrossRefGoogle Scholar
  5. 5.
    Z. Sheng, D. Hu, M. Xue, M. He, P. Gong, and L. Cai (2013). Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett. 5, 145–150.CrossRefGoogle Scholar
  6. 6.
    H. Maeda (2010). Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjugate Chem. 21, 797–802.CrossRefGoogle Scholar
  7. 7.
    V. Ghormade, M. V. Deshpande, and K. M. Paknikar (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29, 792–803.CrossRefGoogle Scholar
  8. 8.
    S. A. Khan and A. Ahmad (2014). Enzyme mediated synthesis of water dispersible, naturally protein capped, monodispersed gold nanoparticles; characterization and mechanistic aspects. RSC Adv. 4, 7729–7734.CrossRefGoogle Scholar
  9. 9.
    S. Shiv Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry (2004). Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3, 482–488.CrossRefGoogle Scholar
  10. 10.
    S. Yallappa, J. Manjanna, B. L. Dhananjaya, U. Vishwanatha, B. Ravishankar, H. Gururaj, P. Niranjana, and B. S. Hungund (2015). Phytochemically functionalized Cu and Ag nanoparticles embedded in MWCNTs for enhanced antimicrobial and anticancer properties. Nano-Micro Lett., 1–11.Google Scholar
  11. 11.
    R. W. Raut, N. S. Kolekar, J. R. Lakkakula, V. D. Mendhulkar, and S. B. Kashid (2010). Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L.) Pierre. Nano-Micro Lett. 2, 106–113.CrossRefGoogle Scholar
  12. 12.
    S. A. Masurkar, P. R. Chaudhari, V. B. Shidore, and S. P. Kamble (2011). Rapid biosynthesis of siver nanoparticles using Cymbopogan citratus (Lemongrass) and its antimicrobial activity. Nano-Micro Lett. 3, 189–194.CrossRefGoogle Scholar
  13. 13.
    A. Kanchana, S. Devarajan, and S. R. Ayyappan (2010). Green synthesis and characterization of palladium nanoparticles and its conjugates from Solanum trilobatum leaf extract. Nano-Micro Lett. 2, 169–176.CrossRefGoogle Scholar
  14. 14.
    A. Ahmad, T. Jagdale, V. Dhas, S. A. Khan, S. Patil, R. Pasricha, V. Ravi, and S. C. Ogale (2007). Fungus based synthesis of chemically difficult to synthesize multifuncational nanoparticles of CuAlO2. Adv. Mater. 19, 3295–3299.CrossRefGoogle Scholar
  15. 15.
    V. Bansal, P. Poddar, A. Ahmad, and M. Sastry (2006). Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128, 11958–11963.CrossRefGoogle Scholar
  16. 16.
    O. Zuas and H. Budiman (2013). Synthesis of nanostructured copper-doped titania and its properties. Nano-Micro Lett. 5, 26–33.CrossRefGoogle Scholar
  17. 17.
    A. Ahmad, P. Mukherjee, D. Mandal, S. Senapati, M. I. Khan, R. Kumar, and M. Sastry (2002). Enzyme mediated extracellular synthesis of CdS Nanoparticles by the Fungus, Fusarium oxysporum. J. Am. Chem. Soc. 124, 12108–12109.CrossRefGoogle Scholar
  18. 18.
    S. Senapati, A. Syed, S. A. Khan, R. Pasricha, M. I. Khan, R. Kumar, and A. Ahmad (2014). Extracellular biosynthesis of metal sulfide nanoparticles using the fungus Fusarium oxysporum. Curr. Nanosci. 10, 588–595.CrossRefGoogle Scholar
  19. 19.
    D. Rautaray, A. Ahmad, and M. Sastry (2003). Biosynthesis of CaCO3 crystals of complex morphology using a fungus and an actinomycetes. J. Am. Chem. Soc. 125, 14656–14657.CrossRefGoogle Scholar
  20. 20.
    A. Ahmad, D. Rautaray, and M. Sastry (2004). Biogenic calcium carbonate: calcite crystals of variable morphology by the reaction of aqueous Ca2+ ions with fungi. Adv. Funct. Mater. 14, 1075–1080.CrossRefGoogle Scholar
  21. 21.
    A. Syed and A. Ahmad (2013). Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity. Spectrochim. Acta Mol. Biomol. Spectrosc. 106, 41–47.CrossRefGoogle Scholar
  22. 22.
    A. A. Ansary, S. A. Kumar, M. V. Krishnasastry, M. K. Abyaneh, S. K. Kulkarni, A. Ahmad, and M. I. Khan (2007). CdS quantum dots: enzyme mediated in vitro synthesis, characterization and conjugation with plant lectins. J. Biomed. Nanotechnol. 3, 406–413.CrossRefGoogle Scholar
  23. 23.
    S. Khalilpourazary and S. S. Meshkat (2014). Investigation of the effects of alumina nanoparticles on spur gear surface roughness and hob tool wear in hobbing process. Int. J. Adv. Des. Manuf. Technol. 71, 1599–1610.CrossRefGoogle Scholar
  24. 24.
    G. Mendonca, D. B. S. Mendonca, F. J. L. Aragao, and L. F. Cooper (2008). Advancing dental implant surface technology—from micron- to nanotopography. Biomaterials 29, 3822–3835.CrossRefGoogle Scholar
  25. 25.
    J. Ge, D. Lu, and Z. Liu (1996). Recent advances in nanostructured biocatalysts. Biochem. Eng. J. 44, 53–59.CrossRefGoogle Scholar
  26. 26.
    P. W. Cooper Explosives Engineering (Wiley-VCH, Inc., New York, 1996).Google Scholar
  27. 27.
    C. E. Bunker, M. J. Smith, K. A. S. Fernando, B. A. Harruff, W. K. Lewis, J. R. Gord, E. A. Guliants, and D. K. Phelps (2010). Spontaneous hydrogen generation from organic: capped aluminum nanoparticles and water. ACS. Appl. Mater. Interfaces 2, 11–14.CrossRefGoogle Scholar
  28. 28.
    H. Li, Y. Li, J. Jiao, and H. M. Hu (2011). Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat. Nanotechnol. 6, 645–650.CrossRefGoogle Scholar
  29. 29.
    X. Mi, X. Zhang, X. Ba, Z. Bai, L. Lu, X. Wang, and Q. Liu (2009). Preparation and luminescent properties of Cr3 +:Al2O3 nano-powders by low-temperature combustion synthesis. Adv. Powder. Technol. 20, 164–168.CrossRefGoogle Scholar
  30. 30.
    D. Liu (2013). Effects of Cr content and morphology on the luminescence properties of the Cr-doped alpha-Al2O3 powders. Ceram. Int. 39, 4765–4769.CrossRefGoogle Scholar
  31. 31.
    J. A. Haber and W. E. Buhro (1998). Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room temperature grain growth. J. Am. Chem. Soc. 120, 10847–10855.CrossRefGoogle Scholar
  32. 32.
    T. Noguchi, K. Matsui, N. M. Islam, Y. Hakuta, and H. Hayashi (2008). Rapid synthesis of γ-Al2O3 nanoparticles in supercritical water by continuous hydrothermal flow reaction system. J. Supercrit. Fluids 46, 129–136.CrossRefGoogle Scholar
  33. 33.
    S. Ghanizadeh, X. Bao, B. Vaidhyanathan, and J. Binner (2014). Synthesis of nano α-alumina powders using hydrothermal and precipitation routes: a comparative study. Ceram. Int. 40, 1311–1319.CrossRefGoogle Scholar
  34. 34.
    P. Manivasakan, A. Karthik, and V. Rajendran (2013). Mass production of Al2O3 and ZrO2 nanoparticles by hot-air spray pyrolysis. Powder Technol. 234, 84–90.CrossRefGoogle Scholar
  35. 35.
    F. Mirjalili, M. Hasmaliza, and L. C. Abdullah (2010). Size-controlled synthesis of nano α-alumina particles through the sol–gel method. Ceram. Int. 36, 1253–1257.CrossRefGoogle Scholar
  36. 36.
    K. Inoue, H. Kurebayashi, M. Hama, Y. Kobayashi, Y. Yasuda, and T. Morita (2013). Fabrication of transparent self-supporting alumina films by homogeneous precipitation process. J. Ceram. Soc. Jpn 121, 484–497.Google Scholar
  37. 37.
    B. Cheng, S. Qu, H. Zhou, and Z. Wang (2006). Al2O3:Cr3+ nanotubes synthesized via homogenization precipitation followed by heat treatment. J. Phys. Chem. B 110, 15749–15754.CrossRefGoogle Scholar
  38. 38.
    M. B. Pomfret, D. J. Brown, A. Epshtey, A. P. Purdy, and J. C. Owrutsky (2008). Electrochemical deposition aluminum nano rods using ionic liquids. Chem. Mater. 20, 5945–5947.CrossRefGoogle Scholar
  39. 39.
    C. Mahendiran, R. Ganesan, and A. Gedanken (2009). Sonoelectrochemical synthesis of aluminum nano particles. Eur. J. Inorg. Chem. 14, 2050–2053.CrossRefGoogle Scholar
  40. 40.
    R. J. Helmich and K. S. Suslick (2010). Chemical aerosol flow synthesis of hollow metallic aluminum particles. Chem. Mater. 22, 4835–4837.CrossRefGoogle Scholar
  41. 41.
    V. Isupov, L. Chupakhina, G. Kryukova, and S. Tsybulya (2001). Fine α-alumina with low alkali: new approach for preparation. Solid State Ion. 141–142, 471–478.CrossRefGoogle Scholar
  42. 42.
    I. N. Bhattacharya, P. K. Gochhayat, P. S. Mukherjee, S. Paul, and P. K. Mitra (2004). Thermal decomposition of precipitated low bulk density basic aluminium sulfate. Mater. Chem. Phys. 88, 32–40.CrossRefGoogle Scholar
  43. 43.
    E. Ryshkewitch Oxide Ceramics, 1st ed (Academic Press, New York, 1960).Google Scholar
  44. 44.
    J. S. Reed Principles of Ceramics Processing, 2nd ed (Wiley-Interscience, New York, 1995).Google Scholar
  45. 45.
    M. Shojaie-Bahaabad and E. Taheri-Nassaj (2008). Economical synthesis of nano alumina powder using an aqueous sol-gel method. Mater. Lett. 62, 3364–3366.CrossRefGoogle Scholar
  46. 46.
    Q. Fu, C. B. Cao, and H. S. Zhu (1999). Preparation of alumina films from a new sol-gel route. Thin Solid Films 348, 99–102.CrossRefGoogle Scholar
  47. 47.
    X. Du, S. Zhao, Y. Liu, J. Li, W. Chen, and Y. Cui (2014). Facile synthesis of monodisperse α-alumina nanoparticles via an isolationmedium- assisted calcination method. Appl. Phys. A Mater. Sci. Process. 116, 1963–1969.CrossRefGoogle Scholar
  48. 48.
    S. W. Chung, E. A. Guliants, C. E. Bunker, D. W. Hammerstroem, Y. Deng, M. A. Burgers, P. A. Jelliss, and S. W. Buckner (2009). Capping and passivation of aluminum nanoparticles using alkyl-substituted epoxides. Langmuir 25, 8883–8887.CrossRefGoogle Scholar
  49. 49.
    D. W. Hammerstroem, M. A. Burgers, S. W. Chung, E. A. Guliants, C. E. Bunker, K. M. Wentz, S. E. Hayes, S. W. Buckner, and P. A. Jelliss (2011). Aluminum nanoparticles capped by polymerization of alkyl-substituted epoxides: ratio-dependent stability and particle size. Inorg. Chem. 50, 5054–5059.CrossRefGoogle Scholar
  50. 50.
    T. J. Foley, C. E. Johnson, and K. T. Higa (2005). Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chem. Mater. 17, 4086–4091.CrossRefGoogle Scholar
  51. 51.
    R. J. Jouet, A. D. Warren, D. M. Rosenberg, V. J. Bellitto, K. Park, and M. R. Zachariah (2005). Surface passivation of bare aluminum nano particles using perflouroalkyl carboxylic acids. Chem. Mater. 17, 2987–2996.CrossRefGoogle Scholar
  52. 52.
    S. K. A. Fernando, M. J. Smith, B. A. Harruff, W. K. Lewis, E. A. Guliants, and C. E. Bunker (2009). Sonochemically assisted thermal decomposition of Alane N,N-dimethylethylamine with titanium (IV) isopropoxide in the presence of oleic acid to yield air-stable and size-selective aluminum core-shell nanoparticles. J. Phys. Chem. C 113, 500–503.CrossRefGoogle Scholar
  53. 53.
    C. E. Aumann, G. L. Skrofronick, and J. A. Martin (1995). Oxidation behavior of aluminum nano particles. J. Vac. Sci. Technol. B 13, 1178–1183.CrossRefGoogle Scholar
  54. 54.
    B. Jean-Paul, A. C. Patrick, J. Fedor, W. Joerg, A. Pascal, S. Mohamed, B. Gopalakrischnan, R. Rolf, T. Alain, and G. Eric (2009). High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602.CrossRefGoogle Scholar
  55. 55.
    E. Mohammadi Zahrani and M. H. Fathi (2009). The effect of high-energy ball milling parameters on the preparation and characterization of fluorapatite nanocrystalline powder. Ceram. Int. 35, 2311–2323.CrossRefGoogle Scholar
  56. 56.
    V. Piriyawong, V. Thongpool, P. Asanithi, and P. Limsuwan (2012). Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique. J. Nanomater. 2012, (1), 1–6.CrossRefGoogle Scholar
  57. 57.
    A. M. Edmonds, M. A. Sobhan, V. K. A. Sreenivasan, E. A. Grebenik, J. R. Rabeau, E. M. Goldys, and A. V. Zvyagin (2013). Nano-ruby: a promising fluorescent probe for background-free cellular imaging. Part. Part. Syst. Charact. 1, 506–513.CrossRefGoogle Scholar
  58. 58.
    X. Shen, X. Nie, H. Hu, and J. Tjong (2012). Effects of coating thickness on thermal conductivities of alumina coatings and alumina/aluminum hybrid materials prepared using plasma electrolytic oxidation. Surf. Coat. Technol. 207, 96–101.CrossRefGoogle Scholar
  59. 59.
    J. Musil, J. Blazek, P. Zeman, S. Proksova, M. Sasek, and R. Cerstvy (2010). Thermal stability of alumina thin films containing γ-Al2O3 phase prepared by reactive magnetron sputtering. Appl. Surf. Sci. 257, 1058–1062.CrossRefGoogle Scholar
  60. 60.
    K. Vanbesien, P. De Visschere, P. F. Smet, and D. Poelman (2006). Electrical properties of Al2O3 films for TFEL-devices made with sol-gel technology. Thin Solid Films 514, 323–328.CrossRefGoogle Scholar
  61. 61.
    K. Y. Park and K. Y. Jung (2009). Synthesis of nano-structured alumina powders thru the aerosol process. Ceramist 12, 27–37.Google Scholar
  62. 62.
    F. Mirjalili, L. C. Abdullah, H. Mohamad, A. Fakhru’l-Razi, A. B. D. Radiah, and R. Aghababazadeh (2011). Process for producing nano-alpha-alumina powder. ISRN Nanotechnol. 2011, 1–5.CrossRefGoogle Scholar
  63. 63.
    W. A. Razali, V. K. A. Sreenivasan, E. M. Goldys, and A. V. Zvyagin (2014). Larg- scale production and characterization of biocompatible colloidal nanoalumina. Langmuir 30, 15091–15101.CrossRefGoogle Scholar
  64. 64.
    H. J. Goodshaw, J. S. Forrester, G. J. Suaning, and E. H. Kisi (2007). Sintering temperature depression in Al2O3 by mechanical milling. J. Mater. Sci 42, 337–345.CrossRefGoogle Scholar
  65. 65.
    S. A. Khan and A. Ahmad (2013). Phase, size and shape transformation by fungal biotransformation of bulk TiO2. Chem. Eng. J. 230, 367–371.CrossRefGoogle Scholar
  66. 66.
    S. A. Hosseini, A. Niaei, and D. Salari (2011). Production of γ-Al2O3 from Kaolin. Open J. Phys. Chem. 1, 23–27.CrossRefGoogle Scholar
  67. 67.
    J. Yu, H. Bai, J. Wang, Z. Li, C. Jiao, Q. Liu, M. Zhang, and L. Liu (2013). Synthesis of alumina nanosheets via supercritical fluid technology with high uranyl adsorptive capacity. New. J. Chem. 37, 366–372.CrossRefGoogle Scholar
  68. 68.
    S. A. Khan, I. Uddin, S. Moeez, and A. Ahmad (2014). Fungus-mediated preferential bioleaching of waste material such as fly-ash as a means of producing extracellular, protein capped, fluorescent and water soluble silica nanoparticles. PLoS One 9, 1–7.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sana Moeez
    • 1
    • 2
  • Ejaz Ahmad Siddiqui
    • 1
  • Shadab Khan
    • 1
  • Absar Ahmad
    • 1
    • 3
  1. 1.Biochemical Sciences DivisionCSIR-National Chemical LaboratoryPuneIndia
  2. 2.Academy of Scientific and Innovative ResearchCSIRNew DelhiIndia
  3. 3.Interdisciplinary Nanotechnology CentreAligarh Muslim UniversityAligarhIndia

Personalised recommendations