Journal of Cluster Science

, Volume 28, Issue 4, pp 2005–2015 | Cite as

Two Novel Two-Dimensional Lanthanide (III) Coordination Polymers Constructed from Isonicotinic Acid and Iminodiacetic Acid: Synthesis, Structure, and Luminescence Properties

  • Wei Xu
  • Chang-Juan Zhang
  • Hua Wang
  • Yi Wang
Original Paper


Two novel two-dimensional Ln coordination polymers (CPs) [Ln33-OH)(IN)3(HIDA) (IDA)2]n (Ln = Eu, 1; Sm, 2; HIN = isonicotinic acid, and H2IDA = iminodiacetic acid) have been successfully synthesized under solvothermal conditions and characterized by IR, TG, and elemental analyses. The structures of 1 and 2 were determined by single-crystal X-ray structural analysis, which shows that LnIII ions interconnect through HIN and H2IDA molecules to generate a 1D chain, and the adjacent chains are joined together by the same form to form the 2D zonary plane of 1 and 2. Meanwhile, We also studied luminescence properties of 1 and 2. The luminescence lifetime and quantum yield of 1 are 1.32 ms and 25.30%, which are significantly longer and higher than the values obtained for reported Eu3+ coordination polymers in the solid state at room temperature.

Graphical Abstract


Ln MOFs Luminescence lifetime and quantum yield H2IDA HIN 

Supplementary material

10876_2017_1194_MOESM1_ESM.docx (448 kb)
Supplementary material 1 (DOCX 447 kb)


  1. 1.
    K. Liu, B. Y. Li, Y. Li, X. Li, F. Yang, G. Zing, Y. Peng, Z. J. Zhang, G. H. Li, Z. Shi, S. H. Feng, and D. T. Song (2014). Chem. Commun. 50, 5031.CrossRefGoogle Scholar
  2. 2.
    Y. Liu, S. F. Wu, G. Wang, G. P. Yu, J. G. Guan, C. Y. Pan, and Z. G. Wang (2014). J. Mater. Chem. A. 2, 7795.CrossRefGoogle Scholar
  3. 3.
    H. M. Yin, J. Q. Wang, Z. Xie, J. H. Yang, J. Bai, J. M. Lu, Y. Zhang, D. H. Yin, and J. Y. S. Lin (2014). Chem. Commun. 50, 3699.CrossRefGoogle Scholar
  4. 4.
    O. Kozachuk, I. Luz, F. X. L. Xamena, H. Noei, M. Kauer, H. B. Albada, E. D. Bloch, B. Marler, Y. M. Wang, M. Muhler, and R. A. Fischer (2014). Angew. Chem. Int. Ed. 53, 1.CrossRefGoogle Scholar
  5. 5.
    K. Manna, T. Zhang, and W. B. Lin (2014). J. Am. Chem. Soc. 136, 6566.CrossRefGoogle Scholar
  6. 6.
    M. Yoon, R. Srirambalaji, and K. Kim (2011). Chem. Rev. 112, 1196.CrossRefGoogle Scholar
  7. 7.
    Z. Q. Xu, W. Meng, H. J. Li, H. W. Hou, and Y. T. Fan (2014). Inorg. Chem. 53, 3260.CrossRefGoogle Scholar
  8. 8.
    P. Dechambenoit and J. R. Long (2011). Chem. Soc. Rev. 40, 3249.CrossRefGoogle Scholar
  9. 9.
    S. Rojas, E. Quartapelle Procopio, F. J. Carmona, M. A. Romero, J. A. R. Navarro, and E. Barea (2014). J. Mater. Chem. B. 2, 2473.CrossRefGoogle Scholar
  10. 10.
    D. X. Ma, B. Y. Li, X. J. Zhou, Q. Zhou, K. Liu, G. Zeng, G. H. Li, Z. Shi, and S. H. Feng (2013). Chem. Commun. 49, 8964.CrossRefGoogle Scholar
  11. 11.
    M. Zhang, G. Feng, Z. G. Song, Y. P. Zhou, H. Y. Chao, D. Q. Yuan, T. T. Y. Tan, Z. G. Guo, Z. G. Hu, B. Z. Tang, B. Liu, and D. Zhao (2014). J. Am. Chem. Soc. 136, 7241.CrossRefGoogle Scholar
  12. 12.
    M. Li, D. Li, M. O’Keeffe, and O. M. Yaghi (2014). Chem. Rev. 114, 1343.CrossRefGoogle Scholar
  13. 13.
    S. L. James (2003). Chem. Soc. Rev. 32, 276.CrossRefGoogle Scholar
  14. 14.
    D. Sarma, M. Prabu, S. Biju, M. L. P. Reddy, and S. Natarajan (2010). Eur. J. Inorg. Chem. 24, 3813.CrossRefGoogle Scholar
  15. 15.
    J. Rocha, L. D. Carlos, F. A. A. Paz, and D. Ananias (2011). Chem. Soc. Rev. 40, 926.CrossRefGoogle Scholar
  16. 16.
    L. D. Carlos, R. A. S. Ferreira, V. D. Bermudez, and S. J. L. Ribeiro (2009). Adv. Mater. 21, 509.CrossRefGoogle Scholar
  17. 17.
    M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk (2009). Chem. Soc. Rev. 38, 1330.CrossRefGoogle Scholar
  18. 18.
    S. Liu, Z. Xiang, Z. Hu, X. Zheng, and D. Cao (2011). J. Mater. Chem. 21, 66493.Google Scholar
  19. 19.
    Y. Q. Xiao, Y. J. Cui, Q. Zheng, S. C. Xiang, G. D. Qian, and B. L. Chen (2010). Chem. Commun. 46, 5503.CrossRefGoogle Scholar
  20. 20.
    H. B. Zhang, L. J. Zhou, J. Wei, Z. H. Li, P. Lin, and S. W. Du (2012). J. Mater. Chem. 22, 21210.CrossRefGoogle Scholar
  21. 21.
    H. H. Li, W. Shi, N. Xu, Z. J. Zhang, Z. Niu, T. Han, and P. Cheng (2012). Cryst. Growth Des. 12, 2602.CrossRefGoogle Scholar
  22. 22.
    H. Wang, S. J. Liu, D. Tian, J. M. Jia, and T. L. Hu (2012). Cryst. Growth Des. 12, 3263.CrossRefGoogle Scholar
  23. 23.
    J. M. Zhou, W. Shi, N. Xu, and P. Cheng (2013). Inorg. Chem. 52, 8082.CrossRefGoogle Scholar
  24. 24.
    B. Zhao, X. Y. Chen, Z. Chen, W. Shi, P. Cheng, S. P. Yan, and D. Z. Liao (2009). Chem. Commun. 21, 3113.CrossRefGoogle Scholar
  25. 25.
    M. L. P. Reddy and S. Sivakumar (2013). Dalton Trans. 42, 2663.CrossRefGoogle Scholar
  26. 26.
    A. R. Ramya, D. Sharma, S. Natarajan, and M. L. P. Reddy (2012). Inorg. Chem. 51, 8818.CrossRefGoogle Scholar
  27. 27.
    X. J. Gu and D. F. Xue (2007). Inorg. Chem. 46, 5349.CrossRefGoogle Scholar
  28. 28.
    J. B. Peng, Q. C. Zhang, X. J. Kong, Y. Z. Zheng, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng, and Z. Zheng (2012). J. Am. Chem. Soc. 134, 3314.CrossRefGoogle Scholar
  29. 29.
    J. W. Zhao, H. L. Li, Y. Z. Li, C. Y. Li, Z. L. Wang, and L. J. Chen (2014). Cryst. Growth Des. 14, 5495.CrossRefGoogle Scholar
  30. 30.
    R. A. Coxall, S. G. Harris, D. K. Henderson, S. Parsons, P. A. Tasker, and R. E. P. Winpenny (2000). J. Chem. Soc. Dalton Trans. 14, 2349.CrossRefGoogle Scholar
  31. 31.
    L. J. Chen, F. Zhang, X. Ma, J. Luo, and J. W. Zhao (2015). Dalton Trans. 44, 12598.CrossRefGoogle Scholar
  32. 32.
    F. S. Richardson (1982). Chem. Rev. 82, 541.CrossRefGoogle Scholar
  33. 33.
    S. J. A. Pope, B. J. Coe, S. Faulkner, E. V. Bichenkova, X. Yu, and K. T. Douglas (2004). J. Am. Chem. Soc. 126, 9490.CrossRefGoogle Scholar
  34. 34.
    J. C. G. Buünzli and C. Piguet (2005). Chem. Soc. Rev. 34, 1048.CrossRefGoogle Scholar
  35. 35.
    G. J. Sopasis, M. Orfanoudaki, P. Zarmpas, A. Philippidis, M. Siczek, T. Lis, J. R. O’Brien, and C. J. Milios (2012). Inorg. Chem. 51, 1170.CrossRefGoogle Scholar
  36. 36.
    G. R. Choppin and D. R. Peterman (1998). Coord. Chem. Rev. 174, 283.CrossRefGoogle Scholar
  37. 37.
    P. T. Ma, R. Wan, Y. N. Si, F. Hu, Y. Y. Wang, J. Y. Niu, and J. P. Wang (2015). Dalton Trans. 44, 11514.CrossRefGoogle Scholar
  38. 38.
    X. F. Li, Y. B. Huang, and R. Cao (2012). Dalton Trans. 41, 6195.CrossRefGoogle Scholar
  39. 39.
    X. Ma, X. Li, Y. E. Cha, and L. P. Jin (2012). Cryst. Growth Des. 12, 5227.CrossRefGoogle Scholar
  40. 40.
    D. T. Lill, A. Bettencourt-Dias, and C. L. Cahill (2007). Inorg. Chem. 46, 3960.CrossRefGoogle Scholar
  41. 41.
    W. S. Lo, J. H. Zhang, W. T. Wong, and G. L. Law (2015). Inorg. Chem. 54, 3725.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Environmental and Pharmaceutical Engineering, Taizhou Institute of Science and TechnologyNUSTTaizhouChina

Personalised recommendations