Advertisement

Journal of Cluster Science

, Volume 28, Issue 4, pp 1955–1962 | Cite as

Synthesis, Crystal Structure and Catalytic Property of a New Cadmium Coordination Polymer

  • Shu-Hua Liu
  • Jian-Wei Zhang
  • Xiao Wang
  • Li-Hong Wang
  • Zhen-Hua Wang
  • Yun-Bo Wei
Original Paper

Abstract

A new cadmium coordination polymer [Cd(L)(Cl)(H2O)]n (1) (L = 5-(imidazol-1-yl)-2-pyridine carboxylic anion) constructed from dinuclear cadmium clusters has been synthesized under hydrothermal condition and structurally characterized by single-crystal X-ray diffraction analysis. The compound crystallizes in triclinic system, space group P-1, with a = 6.8747(6), b = 9.7434(8), c = 9.9119(7) Å, α = 118.615(8)°, β = 104.445(7)°, γ = 94.815(7)°, V = 548.01(9) Å3, Z = 2. Compound 1 is a one-dimensional (1D) double chain structure based on dinuclear [Cd2(Cl)2] clusters, and is further extended to a 3D supramolecular framework by hydrogen bonds. As a Lewis acid catalyst, compound 1 exhibits excellent catalytic performance for the acetalization reaction under mild conditions and can be reused several times without a significant decrease of the catalytic activity.

Keywords

Cadmium compound Hydrothermal synthesis Crystal structure Catalytic property 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 41202175) and the program of Shandong science and technology development (Grant No. 2014GGH02004).

References

  1. 1.
    L. J. Murray, M. Dincă, and J. R. Long (2009). Chem. Soc. Rev. 38, 1294.CrossRefGoogle Scholar
  2. 2.
    J. R. Li, J. Sculley, and H. C. Zhou (2012). Chem. Rev. 112, 869.CrossRefGoogle Scholar
  3. 3.
    M. O’Keeffe and O. M. Yaghi (2012). Chem. Rev. 112, 675.CrossRefGoogle Scholar
  4. 4.
    M.-L. Fu, R. D. Adams, D. Cristancho, P. L.-Plata, J. M. Seminario (2011). Eur. J. Inorg. Chem. 660.Google Scholar
  5. 5.
    M. Fujita, Y. J. Kwon, S. Washizu, and K. Ogura (1994). J. Am. Chem. Soc. 116, 1151.CrossRefGoogle Scholar
  6. 6.
    J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, and K. Kim (2000). Nature 404, 982.CrossRefGoogle Scholar
  7. 7.
    S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki, Y. Kinoshita, and S. Kitagawa (2007). J. Am. Chem. Soc. 129, 2607.CrossRefGoogle Scholar
  8. 8.
    M. Y. Masoomi, S. Beheshtia, and A. Morsali (2014). J. Mater. Chem. A 2, 16863.CrossRefGoogle Scholar
  9. 9.
    Z.-H. Li, L.-P. Xue, L. Wang, S. T. Zhang, and B. T. Zhao (2013). Inorg. Chem. Comm. 27, 119.CrossRefGoogle Scholar
  10. 10.
    A. Karmakar, L. M. D. R. S. Martins, S. Hazra, M. F. C. Guedes da Silva, and A. J. L. Pombeiro (2016). Cryst. Growth Des. 16, 1837.CrossRefGoogle Scholar
  11. 11.
    Y. Cao, Z. Zhu, J. Xu, L. Wang, J. Sun, X. Chen, and Y. Fan (2016). Dalton Trans. 44, 1942.CrossRefGoogle Scholar
  12. 12.
    D. Farrusseng, S. Aguado, and C. Pinel (2009). Angew. Chem. Int. Ed. 48, 7502.CrossRefGoogle Scholar
  13. 13.
    J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, and C. Su (2014). Chem. Soc. Rev. 43, 6011.CrossRefGoogle Scholar
  14. 14.
    J. Gascon, A. Corma, F. Kapteijn and F. X. Llabrés i Xamena (2014). ACS Catal. 4, 361.Google Scholar
  15. 15.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Cryst. 42, 339.CrossRefGoogle Scholar
  16. 16.
    G. Sheldrick (2008). Acta Crystallogr. Sect. A. 64, 112.CrossRefGoogle Scholar
  17. 17.
    Z.-H. Li, L.-P. Xue, S.-H. Li, J.-G. Wang, B.-T. Zhao, J. Kan, and W.-P. Su (2013). CrystEngComm 15, 2745.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Shu-Hua Liu
    • 1
  • Jian-Wei Zhang
    • 2
  • Xiao Wang
    • 1
  • Li-Hong Wang
    • 1
  • Zhen-Hua Wang
    • 1
  • Yun-Bo Wei
    • 1
  1. 1.Shandong Analysis and Test CenterShandong Academy of SciencesJinanPeople’s Republic of China
  2. 2.Departmant of Environmental ScienceQingdao UniversityQingdaoPeople’s Republic of China

Personalised recommendations