Journal of Cluster Science

, Volume 28, Issue 4, pp 1871–1881 | Cite as

Hydrogen Bonding and Iodine Bonding Interactions in Sustaining Two Coordination Polymers Base on Square Grids and Tetranuclear Cobalt Clusters

Original Paper
  • 222 Downloads

Abstract

Two new coordination polymers [Co(H2O)2(bpy)2]·2(Adi) (1) and [Co4(OH)2(Adi)6(bpe)2] (2) (HAdi = 4-amino-3,5-diiodobenzoic acid, bpy = 4,4′-bipyridine, bpe = 1,2-bis(4-pyridyl)ethylene) have been synthesized by methods of hydrothermal reactions and their crystal structures determined. In 1, the mononuclear Co atoms are linked by bpy ligands forming cationic two-dimensional square grids, which are connected by the intercalated Adi guest molecules through significant hydrogen-bonding interactions to give a three-dimensional supramolecular porous network with one-dimensional channels. 2 has a one-dimensional chain structure based on rhombic tetranuclear CoII clusters, connected by bpe ligands. Through special I···I interactions, adjacent chains are extended into a three-dimensional supramolecular structure. The structure versatility indicates that the amino and iodo groups of Adi ligands play a crucial role in modulating the coordination polymers. A discussion of the crystal structures, thermal stabilities, as well as the noncovalent interactions of Adi molecules is provided. IR, elemental analysis and XRPD confirmed the phase purity of the bulk materials. Magnetic properties of 2 in the 300–2 K have been discussed, which reveal the occurrence of antiferromagnetic interactions between CoII ions.

Keywords

Tetranuclear cluster Coordination polymer Iodine bonding Magnetic properties 

Notes

Acknowledgements

This work was supported by the Excellent Young Teacher Development Project of Universities in Guangdong Province (Grant No. 261532106) and the Guangzhou Science and Technology Program (502150105).

Supplementary material

10876_2017_1191_MOESM1_ESM.docx (715 kb)
Supplementary material 1 (DOCX 715 kb)

References

  1. 1.
    M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, and O. M. Yaghi (2001). Acc. Chem. Res. 34, 319.CrossRefGoogle Scholar
  2. 2.
    B. Moulton and M. Zaworotko (2001). Chem. Rev. 101, 1629.CrossRefGoogle Scholar
  3. 3.
    M. D. Ward (2007). Coord. Chem. Rev. 251, 1663.CrossRefGoogle Scholar
  4. 4.
    C. L. Heinecke, T. W. Ni, S. Malola, V. Mäkinen, O. A. Wong, H. Häkkinen, and C. J. Ackerson (2012). J. Am. Chem. Soc. 134, 13316.CrossRefGoogle Scholar
  5. 5.
    W. X. Zhang, P. Q. Liao, R. B. Lin, Y. S. Wei, M. H. Zeng, and X. M. Chen (2015). Coord. Chem. Rev. 293–294, 263.CrossRefGoogle Scholar
  6. 6.
    B. Y. Li, M. Chrzanowski, Y. M. Zhang, and S. Q. Ma (2016). Coord. Chem. Rev. 307, 106.CrossRefGoogle Scholar
  7. 7.
    P. R. Schreiner (2003). Chem. Soc. Rev. 32, 289.CrossRefGoogle Scholar
  8. 8.
    H. W. Roesky and M. Andruh (2003). Coord. Chem. Rev. 236, 91.CrossRefGoogle Scholar
  9. 9.
    G. M. Sheldrick, SADABS 2.05, Empirical Absorption Correction Program (University of Göttingen, Göttingen, 1997).Google Scholar
  10. 10.
    G. M. Sheldrick (2008). Acta. Cryst. A 64, 112.CrossRefGoogle Scholar
  11. 11.
    Y. M. Jiang, Z. Yin, K. H. He, M. H. Zeng, and M. Kurmoo (2011). Inorg. Chem. 50, 2329.CrossRefGoogle Scholar
  12. 12.
    A. L. Spek PLATON, A Multipurpose Crystallographic Tool (Utrecht University, The Netherlands, 2001).Google Scholar
  13. 13.
    G. Aromí, A. S. Batsanov, P. Christian, M. Helliwell, A. Parkin, S. Parsons, A. A. Smith, G. A. Timco, and E. P. Winpenny (2003). Chem. Eur. J. 9, 5142.CrossRefGoogle Scholar
  14. 14.
    H. H. Zou, X. H. Yin, X. J. Sun, Y. L. Zhou, S. Hu, and M. H. Zeng (2010). Inorg. Chem. Commun. 13, 42.CrossRefGoogle Scholar
  15. 15.
    R. Bertani, P. Sgarbossa, A. Venzo, F. Lelj, M. Amati, G. Resnati, T. Pilati, P. Metrangolo, and G. Terraneo (2010). Coord. Chem. Rev. 254, 677.CrossRefGoogle Scholar
  16. 16.
    B. Li, S. Q. Zang, L. Y. Wang, and T. C. W. Mak (2016). Coord. Chem. Rev. 308, 1.CrossRefGoogle Scholar
  17. 17.
    A. J. Bondi (1964). J. Phys. Chem. 68, 441.CrossRefGoogle Scholar
  18. 18.
    S. C. Nyburg and C. H. Faerman (1985). Acta Crystallogr. B 41, 274.CrossRefGoogle Scholar
  19. 19.
    J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado, and B. Tsukerblat (2001). J. Comput. Chem. 22, 985.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina

Personalised recommendations