Advertisement

Journal of Cluster Science

, Volume 28, Issue 4, pp 1883–1896 | Cite as

Biosynthesis and Photocatalytic Properties of SnO2 Nanoparticles Prepared Using Aqueous Extract of Cauliflower

  • Jejenija Osuntokun
  • Damian C. Onwudiwe
  • Eno E. Ebenso
Original Paper

Abstract

This work reports the biosynthesis of Sn(OH)2 using aqueous extract of fresh cauliflower (Brassica oleracea L. var. botrytis), and the subsequent preparation of SnO2 nanoparticles at two different annealing temperatures of 300 and 450 °C for 2 h. The obtained SnO2 nanoparticles were denoted as S1 and S2 for the samples prepared at 300 and 450 °C, respectively. XRD analysis identified rutile tetragonal phase of SnO2 nanoparticles and TEM results gave a quasispherical and spherical morphologies for S1 and S2 respectively of the size range 3.62–6.34 nm. The optical properties were studied with UV–vis and photoluminescence (PL) spectroscopies, and the nanoparticles showed blue shift in their absorption edges. The observed emission peak in the PL spectra found around 419 nm is attributable to oxygen vacancies and defects. Photocatalytic activities of the nanoparticles (S1 and S2) were studied using methylene blue (MB) under ultraviolet light irradiation and the results reveal 91.89 and 88.23% degradation efficiency of MB by S1 and S2 respectively over a period of 180 min.

Keywords

Green synthesis SnO2 Nanoparticles Photodegradation Methylene blue 

Notes

Acknowledgements

JO acknowledges North-West University, Mafikeng campus, South Africa for a Postdoctoral research position and for providing the necessary facilities to carry out this work. The authors gratefully appreciate Dr. Anine Jordaan, of North-West University, Potchefstroom campus, for Transmission electron microscopy (TEM) analysis.

References

  1. 1.
    W. Wu, Q. He, and C. Jiang (2008). Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies nanoscale. Res. Lett. 3, 397–415.Google Scholar
  2. 2.
    Z. Khodami and A. N. Ejhieh (2015). Investigation of photocatalytic effect of ZnO–SnO2/nano clinoptilolite system in the photodegradation of aqueous mixture of 4-methylbenzoic acid/2-chloro-5-nitrobenzoic acid. J. Mol. Catal. 409A, 59–68.CrossRefGoogle Scholar
  3. 3.
    P. T. Moseley (1997). Solid-state gas sensors. Meas. Sci. Technol. 8, 223–237.CrossRefGoogle Scholar
  4. 4.
    K. L. Chopra, S. Major, and D. K. Pandya (1983). Transparent conductors—a status review. Thin Solid Films 102, 1–46.CrossRefGoogle Scholar
  5. 5.
    A. Aoki and H. Sasakura (1970). Tin oxide thin film transistors. Jpn. J. Appl. Phys. 9, 582–585.CrossRefGoogle Scholar
  6. 6.
    A. Sivashanmugam, T. P. Kumar, N. G. Renganathan, S. Gopukumar, M. Wohlfahrt-Mehrens, and J. Garche (2005). Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries. J. Power Sources 144, 197–203.CrossRefGoogle Scholar
  7. 7.
    Y. S. He, J. S. Campbell, R. C. Murphy, M. F. Arenot, and J. S. Swinnea (1993). Electrical and optical characterization of Sb:SnO2. J. Mater. Res. 8, 3131–3134.CrossRefGoogle Scholar
  8. 8.
    G. C. Xie, K. Zhang, B. D. Guo, Q. Liu, L. Fang, and J. R. Gong (2013). Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 25, 3820–3839.CrossRefGoogle Scholar
  9. 9.
    T. Minami (2000). New n-type transparent conducting oxides. MRS Bull. 25, 38–44.CrossRefGoogle Scholar
  10. 10.
    N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri (2012). Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int. J. Mol. Sci. 13, 12242–12258.CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, Y. Chen, P. Westerhoff, K. Hristovski, and J. C. Crittenden (2008). Stability of commercial metal oxide nanoparticles in water. Water Res. 42, 2204–2212.CrossRefGoogle Scholar
  12. 12.
    A. Bhattacharjee, M. Ahmaruzzaman, and T. Sinha (2015). A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochim. Acta A 136, 751–760.CrossRefGoogle Scholar
  13. 13.
    M. M. Rashad, I. A. Ibrahim, I. Osama, and A. E. Shalan (2014). Distinction between SnO2 nanoparticles synthesized using co-precipitation and solvothermal methods for the photovoltaic efficiency of dye-sensitized solar cells. Bull. Mater. Sci. 37, 903–909.CrossRefGoogle Scholar
  14. 14.
    Q. Chu, Z. Zeng, H. Zou Shen, and J. Chen (2014). Preparation of SnO2 nanoparticles using a helical tube reactor via continuous hydrothermal method. Chem. Eng. J. 253, 78–83.CrossRefGoogle Scholar
  15. 15.
    S. de Monredon, A. Cellot, F. Ribot, C. Sanchez, L. Armelao, L. Gueneau, and L. Delattre (2002). Synthesis and characterization of crystalline tin oxide nanoparticles. J. Mater. Chem. 12, 2396–2400.CrossRefGoogle Scholar
  16. 16.
    N. Zamand, A. N. Pour, M. R. Housaindokth, and M. Izadyar (2014). Size-controlled synthesis of SnO2 nanoparticles using reverse microemulsion method. Solid State Sci. 33, 6–11.CrossRefGoogle Scholar
  17. 17.
    S. Talekar, A. Joshi, R. Chougle, A. Nakhe, and R. Bhojwani (2016). Immobilized enzyme mediated synthesis of silver nanoparticles using cross-linked enzyme aggregates (CLEAs) of NADH-dependent nitrate reductase. Nano-Struct. Nano-Obj. 6, 23–33.CrossRefGoogle Scholar
  18. 18.
    N. G. Deshpande, Y. G. Gudage, R. Sharma, J. C. Vyas, J. B. Kim, and Y. P. Lee (2009). Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sens. Actuators 138B, 76–84.CrossRefGoogle Scholar
  19. 19.
    X. Li, Q. Wanga, Y. Zhao, W. Wu, J. Chen, and H. Meng (2013). Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites. J. Colloid Interface Sci. 411, 69–75.CrossRefGoogle Scholar
  20. 20.
    J. Hu (2015). Biosynthesis of SnO2 nanoparticles by Fig (Ficus carica) leaf extract for electrochemically determining Hg(II) in water samples. Int. J. Electrochem. Sci. 10, 10668–10676.Google Scholar
  21. 21.
    A. Bhattacharjee and M. D. Ahmaruzzaman (2015). Photocatalytic-degradation and reduction of organic compounds using SnO2 quantum dots (via a green route) under direct sunlight. RSC Adv. 5, 66122–66133.CrossRefGoogle Scholar
  22. 22.
    N. Srivastava and M. Mukhopadhyay (2014). Biosynthesis of SnO2 nanoparticles using bacterium Erwinia herbicola and their photocatalytic activity for degradation of dyes. Ind. Eng. Chem. Res. 53, 13971–13979.CrossRefGoogle Scholar
  23. 23.
    A. B. Dos Santos, F. J. Cervantes, and J. B. van Lier (2007). Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour. Technol. 98, 2369–2385.CrossRefGoogle Scholar
  24. 24.
    E. Forgacs, T. Cserháti, and G. Oros (2004). Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30, 953–971.CrossRefGoogle Scholar
  25. 25.
    M. M. Khan, S. F. Adil, and A. Al-Mayouf (2015). Metal oxides as photocatalysts. J. Saudi Chem. Soc. 19, 462–464.CrossRefGoogle Scholar
  26. 26.
    A. Diallo, E. Manikandan, V. Rajendran, and M. Maaza (2016). Physical and enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. J. Alloys Compd. 681, 561–570.CrossRefGoogle Scholar
  27. 27.
    E. Haritha, S. M. Roopan, G. Madhavi, G. Elango, N. A. Al-Dhabi, and M. V. Arasu (2016). Green chemical approach towards the synthesis of SnO2 NPs in argument with photocatalytic degradation of diazo dye and its kinetic studies. J. Photochem. Photobiol. B 162, 441–447.CrossRefGoogle Scholar
  28. 28.
    G. Sangami and N. Dharmaraj (2016). UV–visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles. Spectrochim. Acta 97A, 847–852.Google Scholar
  29. 29.
    C. A. Rice-Evans, N. J. Miller, and G. Paganda (1996). Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20, 933–956.CrossRefGoogle Scholar
  30. 30.
    A. K. Mittal, Y. Chisti, and U. C. Banerjee (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356.CrossRefGoogle Scholar
  31. 31.
    K. Mukunthana and S. Balaji (2012). Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. J. Int. Green Nanotechnol. 4, 71–79.CrossRefGoogle Scholar
  32. 32.
    P. Dauthal and M. Mukhopadhyay (2016). Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind. Eng. Chem. Res. 55, 9557–9577.CrossRefGoogle Scholar
  33. 33.
    G. Sangeetha, S. Rajeshwari, and R. Venckates (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater. Res. Bull. 46, 2560–2566.CrossRefGoogle Scholar
  34. 34.
    V. V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina (2014). Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 6, 35–44.Google Scholar
  35. 35.
    A. Naheed, S. Seema, and R. Radheshyam (2012). Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum. Adv. Mat. Lett. 3, 376–380.CrossRefGoogle Scholar
  36. 36.
    L. Jiang, G. Sun, Z. Zhou, S. Sun, Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhous, and Q. Xin (2005). Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocataylsts. J. Phys. Chem. B 109, 8774–8778.CrossRefGoogle Scholar
  37. 37.
    A. Phukan, R. P. Bhattacharjee, and D. K. Dutta (2017). Stabilization of SnO2 nanoparticles into the nanopores of modified Montmorillonite and their antibacterial activity. Adv. Powder Technol. 28, 139–145.CrossRefGoogle Scholar
  38. 38.
    G. Elango, S. M. Kumaran, S. S. Kumar, S. Muthuraj, and S. M. Roopan (2015). Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim. Acta 145A, 176–180.CrossRefGoogle Scholar
  39. 39.
    V. Baranauskas, M. Fontana, Z. J. Guo, H. J. Ceragioli, and A. C. Peterlevitz (2005). Field-emission properties of nanocrystalline tin oxide films. Sens. Actuators 107B, 474–478.CrossRefGoogle Scholar
  40. 40.
    H. Köse, Ş. Karaal, A. O. Aydin, and H. Akbulut (2015). Structural properties of size-controlled SnO2 nanopowders produced by sol–gel method. Mater. Sci. Semicond. Process. 38, 404–412.CrossRefGoogle Scholar
  41. 41.
    G. Socrates (ed.) Infrared and Raman characteristics group frequencies, 3rd ed (Wiley, New York, 2001), p. 347.Google Scholar
  42. 42.
    P. Sugirtha, R. Divya, R. Yedhukrishhnan, K. S. Suganthi, N. Anushia, V. Ponnusami, and K. S. Rajan (2015). Green synthesis of magnesium oxide nanoparticles using Brassica oleracea and Punica granatum peels and their anticancer activity. Asian J. Chem. 27, 2513–2517.CrossRefGoogle Scholar
  43. 43.
    L. Xiao, H. Shen, R. V. Hagen, J. Pan, L. Belkoura, and S. Mathur (2010). Microwave assisted fast and facile synthesis of SnO2 quantum dots and their printing applications. Chem. Commun. 46, 6509–6511.CrossRefGoogle Scholar
  44. 44.
    C. Kim, M. Noh, M. Choi, J. Cho, and B. Park (2005). Critical size of a nano SnO2 electrode for Li-secondary battery. Chem. Mater. 17, 3297–3301.CrossRefGoogle Scholar
  45. 45.
    H. Ullah, I. Khan, Z. H. Yamani, and A. Qurashi (2017). Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason. Sonochem. 34, 484–490.CrossRefGoogle Scholar
  46. 46.
    S. Sambasivam, D. P. Joseph, J. H. Jeong, B. C. Choi, K. T. Lim, S. S. Kim, and T. K. Song (2011). Antiferromagnetic interactions in Er-doped SnO2 DMS nanoparticles. J. Nanopart. Res. 13, 4623–4630.CrossRefGoogle Scholar
  47. 47.
    X. Ji, C. Bai, Q. Zhao, and A. Wang (2017). Facile synthesis of porous SnO2 quasi-nanospheres for photocatalytic degradation of Rhodamine B. Mater. Lett. 189, 58–61.CrossRefGoogle Scholar
  48. 48.
    F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan (2004). Photoluminescence properties of SnO2 nanoparticles synthesized by sol–gel method. J. Phys. Chem. 108B, 8119–8123.CrossRefGoogle Scholar
  49. 49.
    S. Gnanam and V. Rajendran (2010). Luminescence properties of EG-assisted SnO2 nanoparticles by sol-gel process. Dig. J. Nanomater. Biostruct. 5, 699–704.Google Scholar
  50. 50.
    H. Thjee, A. M. Suhai, A. N. Naji, Q. G. Al-Zaidi, G. S. Muhammed, and F. A. Naum (2011). Fabrication and characteristics of fast photo response ZnO/porous silicon UV photoconductive detector. Adv. Mater. Phys. Chem. 1, 70–77.CrossRefGoogle Scholar
  51. 51.
    S. Perween and A. Ranjan (2017). Improved visible-light photocatalytic activity in ZnTiO3 nanopowder prepared by sol-electrospinning. Sol. Energy Mater. Sol. Cells 163, 148–156.CrossRefGoogle Scholar
  52. 52.
    S. K. Tammina, B. K. Mandal, S. Ranjan, and N. Dasgupta (2017). Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J. Photochem. Photobiol. B 166, 158–168.CrossRefGoogle Scholar
  53. 53.
    S. Zhuang, X. Xu, B. Feng, J. Hu, Y. Pang, G. Zhou, L. Tong, and Y. Zhou (2014). photogenerated carriers transfer in dye–graphene–SnO2 composites for highly efficient visible-light photocatalysis. Appl. Mater. Interfaces 6, 613–621.CrossRefGoogle Scholar
  54. 54.
    A. Bhattacharjee and M. Ahmaruzzaman (2015). Facile synthesis of SnO2 quantum dots and its photocatalytic activity in the degradation of eosin Y dye: a green approach. Mater. Lett. 139, 418–421.CrossRefGoogle Scholar
  55. 55.
    V. Bonu, A. Das, S. Amirthapandian, S. Dhara, and A. K. Tyagia (2015). Photoluminescence of oxygen vacancies and hydroxyl group surface functionalized SnO2 nanoparticles. Phys. Chem. Chem. Phys. 17, 9794–9801.CrossRefGoogle Scholar
  56. 56.
    V. Bonu, A. Das, A. K. Prasad, N. Gopala Krishna, S. Dhara, and A. K. Tyagi (2014). Influence of in-plane and bridging oxygen vacancies of SnO2 nanostructures on CH4 sensing at low operating temperatures. Appl. Phys. Lett. 105, 243102–243111.CrossRefGoogle Scholar
  57. 57.
    K. Ravichandran, K. Thirumurugan, N. Jabena Begum, and S. Snega (2013). Investigation of p-type SnO2: Zn films deposited using a simplified spray pyrolysis technique. Superlattices Microstruct. 60, 327–335.CrossRefGoogle Scholar
  58. 58.
    S. Das, S. Kar, and S. Chaudhuri (2006). Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process. J. Appl. Phys. 99, 114303–114307.CrossRefGoogle Scholar
  59. 59.
    E. Diallo, V. Rajendran Manikandan, and M. Maaza (2016). Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. J. Alloys Compds. 681, 561–570.CrossRefGoogle Scholar
  60. 60.
    S. B. Khan, M. Faisal, M. M. Rahman, K. Akhtar, A. M. Asiri, A. Khan, and K. A. Alamry (2013). Effect of particle size on the photocatalytic activity and sensing properties of CeO2 nanoparticles. Int. J. Electrochem. Sci. 8, 7284–7297.Google Scholar
  61. 61.
    F. Gu, S. F. Wang, C. F. Song, M. K. Lu, Y. X. Qi, G. J. Zhou, D. Xu, and D. R. Yuan (2003). Synthesis and luminescence properties of SnO2 nanoparticles. Chem. Phys. Lett. 372, 451–454.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jejenija Osuntokun
    • 1
    • 2
  • Damian C. Onwudiwe
    • 1
    • 2
  • Eno E. Ebenso
    • 1
    • 2
  1. 1.Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and TechnologyNorth-West University, Mafikeng CampusMmabathoSouth Africa
  2. 2.Department of Chemistry, School of Mathematics and Physical Sciences, Faculty of Agriculture, Science and TechnologyNorth-West University, Mafikeng CampusMmabathoSouth Africa

Personalised recommendations