Skip to main content
Log in

Effect of Ag Loading on the Microstructure of TiO2 Electrospun Nanofibers

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this research work, crystalline structure, phase transformation, morphology and mean size of titanium dioxide (TiO2) electrospun nanofibers have been tailored by loading with 2.5, 5.0 and 7.5 wt.% of silver (Ag) which was followed by calcination. The as prepared non woven mats of nanofibers were calcinated at 500 °C to allow the reaction moieties to leave the TiO2 matrix and subsequently formation of Ag clusters. The effect of Ag loading and calcination on the transformation of microstructure of these electrospun nanofibers have been characterized by XRD, FESEM, FT-IR and Raman spectroscopy (RS). The mean diameter of Ag loaded nanofibers has been found to decrease upon calcination which was estimated to 70 nm whereas length was in the order of mm range. XRD and RS results have strongly supported the transformation of crystalline phase from rutile (A) to anatase (R) above 2.5 wt.% of Ag loading in TiO2 after calcination. The roughness on the outer surfaces of these nanofibers has been observed to increase with the Ag loading consequent to calcination, which has been attributed to the formation Ag nanoparticles that were found adsorbed at the surfaces. An interesting finding of this study is the existence of 1D nanofibers’ structure even at higher (7.5 wt.%) Ag loading, as observed by the SEM micrographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin (2006). Nano Lett. 6, 2592–2597.

    Article  CAS  Google Scholar 

  2. D. A. H. Hanaor and C. Charles (2011). Sorrell, review of the anatase to rutile phase transformation. Mater. Sci. 46, 855–874.

    Article  CAS  Google Scholar 

  3. T. B. Ghosh, S. Dhabal, and A. K. Datta (2003). Appl. Phys. 94, 4577.

    Article  CAS  Google Scholar 

  4. M. Hirano, N. Nakahara, K. Ota, O. Tanaike, and N. Inagaki (2003). Solid State Chem. 170, 39.

    Article  CAS  Google Scholar 

  5. G. Li, L. Li, J. G. Boerio, and B. F. Woodfield (2005). Am. Chem. Soc. 127, 8659.

    Article  CAS  Google Scholar 

  6. M. Xu, et al. (2011). Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys. Rev. Lett. 106, 138302.

    Article  Google Scholar 

  7. O. Carp, C. L. Huisman, and A. Reller (2004). Prog. Solid State Chem. 32, 33–177.

    Article  CAS  Google Scholar 

  8. Y. Dai, C. M. Cobley, J. Zeng, Y. Sun, and Y. Xia (2009). Nano Lett. 9, 2455–2459.

    Article  CAS  Google Scholar 

  9. S. J. Doh, C. Kim, S. G. Lee, S. J. Lee, and H. Kim (2008). J. Hazard. Mater. 154, 118–127.

    Article  CAS  Google Scholar 

  10. R. Kralchevska, M. Milanova, T. Tišler, A. Pintar, G. Tyuliev, and D. Todorovsky (2012). Mater. Chem. Phys. 133, 1116–1126.

    Article  CAS  Google Scholar 

  11. L. Han, Y. Xin, H. Liu, X. Ma, and G. Tang (2010). J. Hazard. Mater. 175, 524–531.

    Article  CAS  Google Scholar 

  12. A. Vohra, D. Goswami, D. Deshpande, and S. Block (2006). Appl. Catal. B 64, 57–65.

    Article  CAS  Google Scholar 

  13. D. Li and Y. Xia (2003). Nano Lett. 3, 555–560.

    Article  CAS  Google Scholar 

  14. R. Chandrasekar, L. Zhang, J. Y. Howe, N. E. Hedin, Y. Zhang, and H. Fong (2009). J. Mater. Sci. 44, 1198–1205.

    Article  CAS  Google Scholar 

  15. S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa (2009). ACS Appl. Mater. Interfaces 1, 1140–1143.

    Article  CAS  Google Scholar 

  16. G. Hongyu, W. Xiaohong, G. Yihang, and S. Changlu (2013). Appl. Surf. Sci. 280, 720–725.

    Article  Google Scholar 

  17. W. Chang, F. Xu, X. Mu, L. Ji, G. Ma, and J. Nie (2013). Mater. Res. Bull. 48, 2661–2668.

    Article  CAS  Google Scholar 

  18. H. E. Chao, Y. U. Yun, H. U. Xingfang, and A. Larbot (2003). J. Eur. Ceram. Soc. 23, 1457–1464.

    Article  CAS  Google Scholar 

  19. J. G. Amores, and V. S. Escribano (1994) J. Mater. Chem. 4.

  20. C. Suryanarayana and M. G. Norton X-ray Diffraction: A Practical Approach (Springer, Berlin, 2013).

    Google Scholar 

  21. R. A. Spurr and H. Myers (1957). Anal. Chem. 29, 760–762.

    Article  CAS  Google Scholar 

  22. R. E. Bailey, A. M. Smith, and S. Nie (2004). Phys. E 25, 1–12.

    Article  CAS  Google Scholar 

  23. N. K. Reddy, K. Ramesh, R. Ganesan, K. R. Reddy, K. Gunasekhar, and E. Gopal (2006). Appl. Phys. A 83, 133–138.

    Article  Google Scholar 

  24. M. Behnajady, N. Modirshahla, M. Shokri, and B. Rad (2008). Glob. Nest J. 10, 1–7.

    Google Scholar 

  25. B. M. Reddy, G. K. Reddy, K. N. Rao, I. Ganesh, and J. M. Ferreira (2009). J. Mater. Sci. 44, 4874–4882.

    Article  CAS  Google Scholar 

  26. D. Vu, X. Li, Z. Li, and C. Wang (2012). J. Chem. Eng. Data 58, 71–77.

    Article  Google Scholar 

  27. J.-Y. Park, K.-J. Hwang, J.-W. Lee, and I.-H. Lee (2011). J. Mater. Sci. 46, 7240–7246.

    Article  CAS  Google Scholar 

  28. T. M. Khan and T. BiBi (2012). Chin. Phys. B 21, 097303.

    Article  Google Scholar 

  29. C. Rath, P. Mohanty, A. Pandey, and N. Mishra (2009). J. Phys. D Appl. Phys. 42, 205101.

    Article  Google Scholar 

  30. H. C. Wu Continuum Mechanics and Plasticity (CRC Press, Boca Raton, 2004).

    Book  Google Scholar 

  31. A. Alves, F. Berutti, F. Clemens, T. Graule, and C. Bergmann (2009). Mater. Res. Bull. 44, 312–317.

    Article  CAS  Google Scholar 

  32. S. Ray, R. Banerjee, and A. Barua (1980). Jpn. J. Appl. Phys. 19, 1889.

    Article  CAS  Google Scholar 

  33. M. Suwarnkar, R. Dhabbe, A. Kadam, and K. Garadkar (2014). Ceram. Int. 40, 5489–5496.

    Article  CAS  Google Scholar 

  34. T. Ohsaka, F. Izumi, and Y. Fujiki (1978). J. Raman Spectrosc. 7, 321–324.

    Article  Google Scholar 

  35. S. Hamaguchi and H. Yoshitake (2009). Electrochemistry 77, 373–378.

    Article  CAS  Google Scholar 

  36. A. N. Murashkevich, A. S. Lavitskaya, T. I. Barannikova, and I. M. Zharskii (2008). J. Appl. Spectrosc. 75, 730–734.

    Article  CAS  Google Scholar 

  37. X. Feng, X. Wang, X. Chen, and Y. Yue (2011). Acta Mater. 59, 1934–1944.

    Article  CAS  Google Scholar 

  38. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann (1995). Chem. Rev. 95, 69–96.

    Article  CAS  Google Scholar 

  39. J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li (2006). J. Phys. Chem. B 110, 927–935.

    Article  CAS  Google Scholar 

  40. S. Vlassov, B. Polyakov, M. Vahtrus, M. Mets, M. Antsov, R. Saar, and L. Dorogin (2015). Mater. Charact. 100, 98–103.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the technical support extended by Central Resource Lab, University of Peshawar, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raffi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batool, Z., Raffi, M., Zakria, M. et al. Effect of Ag Loading on the Microstructure of TiO2 Electrospun Nanofibers. J Clust Sci 28, 1857–1870 (2017). https://doi.org/10.1007/s10876-017-1187-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1187-z

Keywords

Navigation