Advertisement

Journal of Cluster Science

, Volume 28, Issue 4, pp 1857–1870 | Cite as

Effect of Ag Loading on the Microstructure of TiO2 Electrospun Nanofibers

  • Zaira Batool
  • M. Raffi
  • M. Zakria
  • Rana I. Shakoor
  • R. Rashid
  • Mazhar Mehmood
  • Muhammad Aslam Mirza
Original Paper
  • 177 Downloads

Abstract

In this research work, crystalline structure, phase transformation, morphology and mean size of titanium dioxide (TiO2) electrospun nanofibers have been tailored by loading with 2.5, 5.0 and 7.5 wt.% of silver (Ag) which was followed by calcination. The as prepared non woven mats of nanofibers were calcinated at 500 °C to allow the reaction moieties to leave the TiO2 matrix and subsequently formation of Ag clusters. The effect of Ag loading and calcination on the transformation of microstructure of these electrospun nanofibers have been characterized by XRD, FESEM, FT-IR and Raman spectroscopy (RS). The mean diameter of Ag loaded nanofibers has been found to decrease upon calcination which was estimated to 70 nm whereas length was in the order of mm range. XRD and RS results have strongly supported the transformation of crystalline phase from rutile (A) to anatase (R) above 2.5 wt.% of Ag loading in TiO2 after calcination. The roughness on the outer surfaces of these nanofibers has been observed to increase with the Ag loading consequent to calcination, which has been attributed to the formation Ag nanoparticles that were found adsorbed at the surfaces. An interesting finding of this study is the existence of 1D nanofibers’ structure even at higher (7.5 wt.%) Ag loading, as observed by the SEM micrographs.

Keywords

Nanofibers Electrospinning Electron microscopy X-ray diffraction Raman spectroscopy Crystal structure 

Notes

Acknowledgements

The authors would like to acknowledge the technical support extended by Central Resource Lab, University of Peshawar, Pakistan.

References

  1. 1.
    D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin (2006). Nano Lett. 6, 2592–2597.CrossRefGoogle Scholar
  2. 2.
    D. A. H. Hanaor and C. Charles (2011). Sorrell, review of the anatase to rutile phase transformation. Mater. Sci. 46, 855–874.CrossRefGoogle Scholar
  3. 3.
    T. B. Ghosh, S. Dhabal, and A. K. Datta (2003). Appl. Phys. 94, 4577.CrossRefGoogle Scholar
  4. 4.
    M. Hirano, N. Nakahara, K. Ota, O. Tanaike, and N. Inagaki (2003). Solid State Chem. 170, 39.CrossRefGoogle Scholar
  5. 5.
    G. Li, L. Li, J. G. Boerio, and B. F. Woodfield (2005). Am. Chem. Soc. 127, 8659.CrossRefGoogle Scholar
  6. 6.
    M. Xu, et al. (2011). Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys. Rev. Lett. 106, 138302.CrossRefGoogle Scholar
  7. 7.
    O. Carp, C. L. Huisman, and A. Reller (2004). Prog. Solid State Chem. 32, 33–177.CrossRefGoogle Scholar
  8. 8.
    Y. Dai, C. M. Cobley, J. Zeng, Y. Sun, and Y. Xia (2009). Nano Lett. 9, 2455–2459.CrossRefGoogle Scholar
  9. 9.
    S. J. Doh, C. Kim, S. G. Lee, S. J. Lee, and H. Kim (2008). J. Hazard. Mater. 154, 118–127.CrossRefGoogle Scholar
  10. 10.
    R. Kralchevska, M. Milanova, T. Tišler, A. Pintar, G. Tyuliev, and D. Todorovsky (2012). Mater. Chem. Phys. 133, 1116–1126.CrossRefGoogle Scholar
  11. 11.
    L. Han, Y. Xin, H. Liu, X. Ma, and G. Tang (2010). J. Hazard. Mater. 175, 524–531.CrossRefGoogle Scholar
  12. 12.
    A. Vohra, D. Goswami, D. Deshpande, and S. Block (2006). Appl. Catal. B 64, 57–65.CrossRefGoogle Scholar
  13. 13.
    D. Li and Y. Xia (2003). Nano Lett. 3, 555–560.CrossRefGoogle Scholar
  14. 14.
    R. Chandrasekar, L. Zhang, J. Y. Howe, N. E. Hedin, Y. Zhang, and H. Fong (2009). J. Mater. Sci. 44, 1198–1205.CrossRefGoogle Scholar
  15. 15.
    S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa (2009). ACS Appl. Mater. Interfaces 1, 1140–1143.CrossRefGoogle Scholar
  16. 16.
    G. Hongyu, W. Xiaohong, G. Yihang, and S. Changlu (2013). Appl. Surf. Sci. 280, 720–725.CrossRefGoogle Scholar
  17. 17.
    W. Chang, F. Xu, X. Mu, L. Ji, G. Ma, and J. Nie (2013). Mater. Res. Bull. 48, 2661–2668.CrossRefGoogle Scholar
  18. 18.
    H. E. Chao, Y. U. Yun, H. U. Xingfang, and A. Larbot (2003). J. Eur. Ceram. Soc. 23, 1457–1464.CrossRefGoogle Scholar
  19. 19.
    J. G. Amores, and V. S. Escribano (1994) J. Mater. Chem. 4.Google Scholar
  20. 20.
    C. Suryanarayana and M. G. Norton X-ray Diffraction: A Practical Approach (Springer, Berlin, 2013).Google Scholar
  21. 21.
    R. A. Spurr and H. Myers (1957). Anal. Chem. 29, 760–762.CrossRefGoogle Scholar
  22. 22.
    R. E. Bailey, A. M. Smith, and S. Nie (2004). Phys. E 25, 1–12.CrossRefGoogle Scholar
  23. 23.
    N. K. Reddy, K. Ramesh, R. Ganesan, K. R. Reddy, K. Gunasekhar, and E. Gopal (2006). Appl. Phys. A 83, 133–138.CrossRefGoogle Scholar
  24. 24.
    M. Behnajady, N. Modirshahla, M. Shokri, and B. Rad (2008). Glob. Nest J. 10, 1–7.Google Scholar
  25. 25.
    B. M. Reddy, G. K. Reddy, K. N. Rao, I. Ganesh, and J. M. Ferreira (2009). J. Mater. Sci. 44, 4874–4882.CrossRefGoogle Scholar
  26. 26.
    D. Vu, X. Li, Z. Li, and C. Wang (2012). J. Chem. Eng. Data 58, 71–77.CrossRefGoogle Scholar
  27. 27.
    J.-Y. Park, K.-J. Hwang, J.-W. Lee, and I.-H. Lee (2011). J. Mater. Sci. 46, 7240–7246.CrossRefGoogle Scholar
  28. 28.
    T. M. Khan and T. BiBi (2012). Chin. Phys. B 21, 097303.CrossRefGoogle Scholar
  29. 29.
    C. Rath, P. Mohanty, A. Pandey, and N. Mishra (2009). J. Phys. D Appl. Phys. 42, 205101.CrossRefGoogle Scholar
  30. 30.
    H. C. Wu Continuum Mechanics and Plasticity (CRC Press, Boca Raton, 2004).CrossRefGoogle Scholar
  31. 31.
    A. Alves, F. Berutti, F. Clemens, T. Graule, and C. Bergmann (2009). Mater. Res. Bull. 44, 312–317.CrossRefGoogle Scholar
  32. 32.
    S. Ray, R. Banerjee, and A. Barua (1980). Jpn. J. Appl. Phys. 19, 1889.CrossRefGoogle Scholar
  33. 33.
    M. Suwarnkar, R. Dhabbe, A. Kadam, and K. Garadkar (2014). Ceram. Int. 40, 5489–5496.CrossRefGoogle Scholar
  34. 34.
    T. Ohsaka, F. Izumi, and Y. Fujiki (1978). J. Raman Spectrosc. 7, 321–324.CrossRefGoogle Scholar
  35. 35.
    S. Hamaguchi and H. Yoshitake (2009). Electrochemistry 77, 373–378.CrossRefGoogle Scholar
  36. 36.
    A. N. Murashkevich, A. S. Lavitskaya, T. I. Barannikova, and I. M. Zharskii (2008). J. Appl. Spectrosc. 75, 730–734.CrossRefGoogle Scholar
  37. 37.
    X. Feng, X. Wang, X. Chen, and Y. Yue (2011). Acta Mater. 59, 1934–1944.CrossRefGoogle Scholar
  38. 38.
    M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann (1995). Chem. Rev. 95, 69–96.CrossRefGoogle Scholar
  39. 39.
    J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li (2006). J. Phys. Chem. B 110, 927–935.CrossRefGoogle Scholar
  40. 40.
    S. Vlassov, B. Polyakov, M. Vahtrus, M. Mets, M. Antsov, R. Saar, and L. Dorogin (2015). Mater. Charact. 100, 98–103.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zaira Batool
    • 1
  • M. Raffi
    • 2
  • M. Zakria
    • 2
  • Rana I. Shakoor
    • 4
  • R. Rashid
    • 2
  • Mazhar Mehmood
    • 3
  • Muhammad Aslam Mirza
    • 1
  1. 1.Department of ChemistryMirpur University of Science and Technology (MUST)Mirpur (AJK)Pakistan
  2. 2.Department of Materials EngineeringNational Institute of Lasers and Optronics (NILOP)IslamabadPakistan
  3. 3.Department of Materials and MetallurgyPakistan Institute of Engineering and Applied Sciences (PIEAS)IslamabadPakistan
  4. 4.Department of Mechatronics EngineeringAir UniversityIslamabadPakistan

Personalised recommendations