Journal of Cluster Science

, Volume 28, Issue 4, pp 1825–1836 | Cite as

Effect of P-Containing Ligands on the Structural and Optical Properties of (CdSe)n (n = 3, 6, 10) Clusters

Original Paper
  • 170 Downloads

Abstract

The effect of phosphorus-containing ligands on the structure, energetics and properties of the (CdSe)n clusters (n = 3, 6, and 10) with different number of PH3 and PMe3 ligands were studied by using density functional theory calculations. The P atom in the ligand interacts with Cd and forms a strong Cd–P coordination bond. The introduction of ligands does not change the cluster architecture, but leads to considerable changes in Cd–Se bondlength, charge distribution, binding energy, HOMO–LUMO gap and optical absorption. The ligand influence is enhanced with increasing ligand coverage. A blueshift in absorption band was predicted for the clusters with increasing ligands, resulting from the electron donating characteristics of the ligands that hamper electron transition from Se to Cd. As P-containing ligands are often used in the preparation of CdSe nanocrystals, our calculations reveal the influence of ligand-cluster interaction on the cluster geometrical and electronic properties, which would be helpful for the nanocrystal design and synthesis.

Keywords

Ligand effect CdSe clusters Optical properties First-principles calculations 

Notes

Acknowledgments

Z.Z. thanks the Project of Postgraduate Degree Construction, Southwest University for Nationalities (No. 2015XWD-S0703). M.Y. thanks the financial support from National Natural Science Foundation of China (No. 21373140). S.Y. thanks the China Scholarship Council Foundation (No. 201600850004) and the Post Doctor Foundation of Institute of Atomic and Molecular Physics (No. 0020227602003).

Supplementary material

10876_2017_1186_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2724 kb)

References

  1. 1.
    D. Bimberg and U. W. Pohl (2011). Mater. Today. 14, 388.CrossRefGoogle Scholar
  2. 2.
    M. Wu, P. Mukherjee, D. N. Lamont and D. H. Waldeck (2010). J. Phys. Chem. C. 114, 5751.CrossRefGoogle Scholar
  3. 3.
    Y. S. Park, A. Dmytruk, I. Dmitruk, A. Kasuya, M. Takeda, N. Ohuchi, Y. Okamoto, N. Kaji, M. Tokeshi and Y. Baba (2010). ACS Nano. 4, 121.CrossRefGoogle Scholar
  4. 4.
    C. L. Wang, S. H. Xu, L. H. Ye, L. Wei and Y. P. Cui (2011). J. Clust. Sci. 22, 49.CrossRefGoogle Scholar
  5. 5.
    X. Ji, D. Copenhaver, C. Sichmeller and X. Peng (2008). J. Am. Chem. Soc. 130, 5726.CrossRefGoogle Scholar
  6. 6.
    T. Z. Markus, S. Itzhakov, Y. I. Alkotzer, D. Cahen, G. Hodes, D. Oron and R. Naaman (2011). J. Phys. Chem. C. 115, 13236.CrossRefGoogle Scholar
  7. 7.
    R. Leitsmann and F. Bechstedt, ACS Nano. 11 (2009) 3505.CrossRefGoogle Scholar
  8. 8.
    C. B. Murray, D. J. Norris and M. G. Bawendi (1993). J. Am. Chem. Soc. 115, 8706.CrossRefGoogle Scholar
  9. 9.
    E. Sanville, A. Burnin and J. J. BelBruno (2006). J. Phys. Chem. A. 110, 2378.CrossRefGoogle Scholar
  10. 10.
    C. Liu, S. Y. Chung, S. Lee, S. Weiss, and D. Neuhauser (2009). J. Chem. Phys. 131, 174705.CrossRefGoogle Scholar
  11. 11.
    P. Karamanis, G. Maroulis and C. Pouchan (2006). J. Chem. Phys. 124, 071101-1.CrossRefGoogle Scholar
  12. 12.
    R. Jose, N. U. Zhanpeisov, H. Fukumura, Y. Baba and M. Ishikawa (2006). J. Am. Chem. Soc. 128, 629.CrossRefGoogle Scholar
  13. 13.
    A. Puzder, A. J. Williamson, F. Gygi and G. Galli (2004). Phys. Rev. Lett. 92, 217401-1.CrossRefGoogle Scholar
  14. 14.
    K. A. Nguyen, P. N. Day and R. Pachter (2010). J. Phys. Chem. C. 114, 16197.CrossRefGoogle Scholar
  15. 15.
    S.V. Kilina, D.S. Kilin and O.V. Prezhdo (2009). ACS Nano. 3, 93.CrossRefGoogle Scholar
  16. 16.
    T. M. Inerbaev, A. E. Masunov, S. I. Khondaker, A. Dobrinescu, A. V. Plamadă and Y. Kawazoe (2009). J. Chem. Phys. 131, 044106-1.CrossRefGoogle Scholar
  17. 17.
    C. M. Isborn, S. V. Kilina, X. Li and O. V. Prezhdo (2008). J. Phys. Chem. C. 112, 18291.CrossRefGoogle Scholar
  18. 18.
    P. Yang, S. Tretiak and S. Ivanov (2011). J. Clust. Sci. 22, 405.CrossRefGoogle Scholar
  19. 19.
    P. Yang, S. Tretiak, A. E. Masunov and S. Ivanov (2008). J. Chem. Phys. 129, 074709-1.Google Scholar
  20. 20.
    T. P. A. Ruberu, H. R. Albright, B. Callis, B. Ward, J. Cisneros, H. J. Fan and J. Vela (2012). ACS Nano. 6, 5348.CrossRefGoogle Scholar
  21. 21.
    V. V. Albert, S. A. Ivanov, S. Tretiak and S. V. Kilina (2011). J. Phys. Chem. C. 115, 15793.CrossRefGoogle Scholar
  22. 22.
    Y. Gao, B. Zhou, S. Kang, M. Xin, P. Yang, X. Dai, Z. Wang and R. Zhou (2014). RSC Adv. 4, 27146.CrossRefGoogle Scholar
  23. 23.
    S. Y. Chung, S. Lee, C. Liu and D. Neuhauser (2009). J. Phys. Chem. B. 113, 292.CrossRefGoogle Scholar
  24. 24.
    Y. Q. Cui, Z. Y. Lou, X. Q. Wang, S. P. Yu and M. L. Yang (2015). Phys. Chem. Chem. Phys. 17, 9222.CrossRefGoogle Scholar
  25. 25.
    E. Lim, A. E. Kuznetsov and D. N. Beratan (2012). Chem. Phys. 407, 97.CrossRefGoogle Scholar
  26. 26.
    A. E. Kuznetsov, D. Balamurugan, S. S. Skourtis and D. N. Beratan (2012). J. Phys. Chem. C. 116, 6817.CrossRefGoogle Scholar
  27. 27.
    C. J. Murphy (1996). J. Clust. Sci. 7, 341.CrossRefGoogle Scholar
  28. 28.
    X. Q. Wang, Q. Zeng, J. Shi, G. Jiang, M. L. Yang, X. Y. Liu, G. Enright and K. Yu (2013). Chem. Phys. Lett. 568, 125.CrossRefGoogle Scholar
  29. 29.
    J. M. Azpiroz, J. M. Matxain, I. Infante, X. Lopez and J. M. Ugalde (2013). Phys. Chem. Chem. Phys. 15, 10996.CrossRefGoogle Scholar
  30. 30.
    M. D. Ben, R. W. A. Havenith, R. Broer and M. Stener (2011). J. Phys. Chem. C. 115, 16782.CrossRefGoogle Scholar
  31. 31.
    J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria (2003). Phys. Rev. Lett. 91, 146401-1.CrossRefGoogle Scholar
  32. 32.
    D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss (1990). Theor Chim Acta. 77, 123.CrossRefGoogle Scholar
  33. 33.
    TURBOMOLE V5-9-1. University of Karlsruhe (2007).Google Scholar
  34. 34.
    J. P. Perdew, K. Burke and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  35. 35.
    A. D. Becke (1988). Phys. Rev. A. 38, 3098.CrossRefGoogle Scholar
  36. 36.
    C. L. Lee, W. Yang and R. G. Parr (1988). Phys. Rev. B. 37, 785.CrossRefGoogle Scholar
  37. 37.
    J. H. Wood and A. M. Boring (1978). Phys. Rev. B. 18, 2701.CrossRefGoogle Scholar
  38. 38.
    K. Eichkorn, O. Treutler, H. Oehm, M. Haeser and R. Ahlrichs (1995). Chem. Phys. Lett. 242, 652.CrossRefGoogle Scholar
  39. 39.
    M. Sierka, A. Hogekamp and R. Ahlrichs (2003). J. Chem. Phys. 118, 9136.CrossRefGoogle Scholar
  40. 40.
    M. E. Casida, in D. P. Chong (ed.), Recent Advances in Density Functional Methods (World Scientific Publishing Co Pvt. Ltd., Singapore, 1995).Google Scholar
  41. 41.
    E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold, NBO6.0, Theoretical Chemistry Institute, University of Wisconsin, Madison (2013).Google Scholar
  42. 42.
    W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.CrossRefGoogle Scholar
  43. 43.
    P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.CrossRefGoogle Scholar
  44. 44.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox GAUSSIAN09, Revision A.01, Gaussian, Inc. (Wallingford, CT, 2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina
  2. 2.College of Chemistry and Environment Protection EngineeringSouthwest University for NationalitiesChengduChina
  3. 3.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina

Personalised recommendations