Journal of Cluster Science

, Volume 28, Issue 4, pp 1837–1856 | Cite as

Size Dependent Catalytic Activity of Actinodaphne madraspatana Bedd Leaves Mediated Silver Nanoparticles

  • Dhananjayan Badma Priya
  • Indira Viswambaran Asharani
Original Paper


Green synthesis of metal nanoparticles using earth abundant materials in the absence of any toxic solvent, reducing agent and protecting group is one of the emerging areas of research in materials chemistry. Herein, we report a green method for the synthesis of silver nanoparticles (AgNPs) using Actinodaphne madraspatana Bedd leaf extract as reducing as well as stabilizing agent. To our delight, AgNPs of different sizes could be readily synthesized by simply changing the pH of plant extract and the average size of AgNPs were found to be 60, 35 and 20 nm at pH 6, 9 and 12 respectively. The efficacy of prepared AgNPs towards the catalytic reduction of 4-nitrophenol (4-NP) has been investigated and the nanocatalysts have demonstrated excellent catalytic activity as evidenced from the rate constants. The kinetics of reduction reaction follows Langmuir–Hinshelwood mechanism, based on which the rate constant ‘k’ was calculated. The effect of catalyst dosage, concentration of 4-NP, concentration of NaBH4 and size of AgNPs towards catalytic reduction of 4-NP has been systematically investigated. It was interesting to notice that the AgNPs have exhibited size dependent catalytic activity towards reduction of 4-NP and the catalytic activity was found to increase with decrease in particle size.

Graphical Abstract


Green synthesis Silver nanoparticles 4-Nitrophenol Catalytic reduction Size dependent Pseudo-first order kinetics 



Authors gratefully express their gratitude to VIT University, Vellore, India for providing research platform to carry out this research work and providing the instrumental facilities like UV–Vis spectrophotometer, FTIR and XRD.

Supplementary material

10876_2017_1185_MOESM1_ESM.docx (1005 kb)
Zeta potential measurements, UV–Vis absorption spectrum of 4-NP and Plots of ln(At/A0) versus time of different sized AgNPs by varying concentration of catalyst, 4-NP and NaBH4 are provided in supporting information. (DOCX 1004 kb)


  1. 1.
    M. Nemanashi and R. Meijboom (2013). J. Colloid Interface Sci. 389, 260–267.CrossRefGoogle Scholar
  2. 2.
    X. Qiu, Q. Liu, M. Song, and C. Huang (2016). J. Colloid Interface Sci. 477, 131–137.CrossRefGoogle Scholar
  3. 3.
    N. A. García (1994). J. Photochem. Photobiol. B 22, 185–196.CrossRefGoogle Scholar
  4. 4.
    R. Rajamanikandan, K. Shanmugaraj, and M. Ilanchelian (2016). J. Cluster Sci.. doi: 10.1007/s10876-016-1095-7:1-15.Google Scholar
  5. 5.
    B. Muller, M. Shahid, and G. Kinet (1999). Corros. Sci. 41, 1323–1331.CrossRefGoogle Scholar
  6. 6.
    J. F. Corbett (1999). Dyes Pigm. 41, 127–136.CrossRefGoogle Scholar
  7. 7.
    I. V. Asharani and D. Thirumalai (2012). J. Chin. Chem. Soc. 59, 1455–1460.CrossRefGoogle Scholar
  8. 8.
    S. Saha, A. Pal, S. Kundu, S. Basu, and T. Pal (2010). Langmuir 26, 2885–2893.CrossRefGoogle Scholar
  9. 9.
    S. Zhang, S. Gai, F. He, Y. Dai, P. Gao, L. Li, Y. Chen, and P. Yang (2014). Nanoscale 6, 7025–7032.CrossRefGoogle Scholar
  10. 10.
    P. KumaráVerma (2012). Green Chem. 14, 2289–2293.CrossRefGoogle Scholar
  11. 11.
    K. Layek, M. L. Kantam, M. Shirai, D. Nishio-Hamane, T. Sasaki, and H. Maheswaran (2012). Green Chem. 14, 3164–3174.CrossRefGoogle Scholar
  12. 12.
    M. Baron, E. Métay, M. Lemaire, and F. Popowycz (2013). Green Chem. 15, 1006–1015.CrossRefGoogle Scholar
  13. 13.
    L. Zhou, C. Gao, and W. Xu (2010). Langmuir 26, 11217–11225.CrossRefGoogle Scholar
  14. 14.
    F. A. Westerhaus, R. V. Jagadeesh, G. Wienhöfer, M.-M. Pohl, J. Radnik, A.-E. Surkus, J. Rabeah, K. Junge, H. Junge, and M. Nielsen (2013). Nat. Chem. 5, 537–543.CrossRefGoogle Scholar
  15. 15.
    R. V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl, J. Radnik, J. Rabeah, H. Huan, V. Schünemann, A. Brückner, and M. Beller (2013). Science 342, 1073–1076.CrossRefGoogle Scholar
  16. 16.
    A. Corma and P. Serna (2006). Science 313, 332–334.CrossRefGoogle Scholar
  17. 17.
    S. Sharma (2015). J. Colloid Interface Sci. 441, 25–29.CrossRefGoogle Scholar
  18. 18.
    R. Rajesh, E. Sujanthi, S. S. Kumar, and R. Venkatesan (2015). Phys. Chem. Chem. 17, 11329–11340.CrossRefGoogle Scholar
  19. 19.
    U. Demirci and F. Garin (2008). J. Mol. Catal. A Chem. 279, 57–62.CrossRefGoogle Scholar
  20. 20.
    L. Ai, X. Gao, and J. Jiang (2014). J. Power Sources 257, 213–220.CrossRefGoogle Scholar
  21. 21.
    L. Ai and L. Li (2013). Chem. Eng. J. 223, 688–695.CrossRefGoogle Scholar
  22. 22.
    X. Li, Z. Niu, J. Jiang, and L. Ai (2016). J. Mater. Chem. A 4, 3204–3209.CrossRefGoogle Scholar
  23. 23.
    W. Ye, J. Yu, Y. Zhou, D. Gao, D. Wang, C. Wang, and D. Xue (2016). Appl. Catal. B 181, 371–378.CrossRefGoogle Scholar
  24. 24.
    S. Lebaschi, M. Hekmati, and H. Veisi (2017). J. Colloid Interface Sci. 485, 223–231.CrossRefGoogle Scholar
  25. 25.
    S. Sareen, V. Mutreja, B. Pal, and S. Singh (2016). J. Nanopart. Res. 18, 332.CrossRefGoogle Scholar
  26. 26.
    S. S. Kumar, K. Kwak, and D. Lee (2011). Anal. Chem. 83, 3244–3247.CrossRefGoogle Scholar
  27. 27.
    K. Kwak, S. S. Kumar, K. Pyo, and D. Lee (2013). ACS Nano 8, 671–679.CrossRefGoogle Scholar
  28. 28.
    G. Singhal, R. Bhavesh, K. Kasariya, A. R. Sharma, and R. P. Singh (2011). J. Nanopart. Res. 13, 2981–2988.CrossRefGoogle Scholar
  29. 29.
    H. Lu and J. Yao (2014). Curr. Org. Chem. 18, 1365–1372.CrossRefGoogle Scholar
  30. 30.
    Z. Zhang, C. Shao, Y. Sun, J. Mu, M. Zhang, P. Zhang, Z. Guo, P. Liang, C. Wang, and Y. Liu (2012). J. Mater. Chem. 22, 1387–1395.CrossRefGoogle Scholar
  31. 31.
    S. Xiao, W. Xu, H. Ma, and X. Fang (2012). RSC Adv. 2, 319–327.CrossRefGoogle Scholar
  32. 32.
    H. Yin, T. Yamamoto, Y. Wada, and S. Yanagida (2004). Mater. Chem. Phys. 83, 66–70.CrossRefGoogle Scholar
  33. 33.
    A. Gangula, R. Podila, L. Karanam, C. Janardhana, and A. M. Rao (2011). Langmuir 27, 15268–15274.CrossRefGoogle Scholar
  34. 34.
    C. Prasad, K. Srinivasulu, and P. Venkateswarlu (2015). Ind. Chem. 1, 104.CrossRefGoogle Scholar
  35. 35.
    R. M. Tripathi, N. Kumar, A. Shrivastav, P. Singh, and B. R. Shrivastav (2013). J. Mol. Catal. B Enzym. 96, 75–80.CrossRefGoogle Scholar
  36. 36.
    M. Nasrollahzadeh, S. M. Sajadi, F. Babaei, and M. Maham (2015). J. Colloid Interface Sci. 450, 374–380.CrossRefGoogle Scholar
  37. 37.
    D. Saravanan and V. Kasisankar (2013). Int. J. Res. Pharm. Sci. 4, 469–473.Google Scholar
  38. 38.
    I. V. Asharani and D. Saravanan (2013). Asian J. Pharm. Clin. Res. 6, 114–118.Google Scholar
  39. 39.
    B. Suneetha, K. Prasad, B. Soumya, P. D. Nishantha, B. S. Kumar, and D. Rajaneekar (2014). J. Pharmacogn. Phytochem. 6, 1–4.Google Scholar
  40. 40.
    B. Suneetha, K. Prasad, P. D. Nishanthi, B. Soumya, and B. S. Kumar (2014). J. Pharmacogn. Phytochem. 6, 176–180.Google Scholar
  41. 41.
    O. V. Kharissova, H. R. Dias, B. I. Kharisov, B. O. Pérez, and V. M. J. Pérez (2013). Trends Biotechnol. 31, 240–248.CrossRefGoogle Scholar
  42. 42.
    A. A. Kajani, A.-K. Bordbar, S. H. Zarkesh Esfahani, A. R. Khosropour, and A. Razmjou (2014). RSC Adv. 4, 61394–61403.CrossRefGoogle Scholar
  43. 43.
    V. Reddy, R. S. Torati, S. Oh, and C. Kim (2013). Ind. Eng. Chem. Res. 52, 556–564.CrossRefGoogle Scholar
  44. 44.
    O. S. Oluwafemi, Y. Lucwaba, A. Gura, M. Masabeya, V. Ncapayi, O. O. Olujimi, and S. P. Songca (2013). Colloids Surf. B Biointerfaces 102, 718–723.CrossRefGoogle Scholar
  45. 45.
    A. Ahmad, F. Syed, A. Shah, Z. Khan, K. Tahir, A. U. Khan, and Q. Yuan (2015). RSC Adv. 5, 73793–73806.CrossRefGoogle Scholar
  46. 46.
    C. K. Tagad, S. R. Dugasani, R. Aiyer, S. Park, A. Kulkarni, and S. Sabharwal (2013). Sens. Actuators B Chem. 183, 144–149.CrossRefGoogle Scholar
  47. 47.
    Y. Cao, R. Zheng, X. Ji, H. Liu, R. Xie, and W. Yang (2014). Langmuir 30, 3876–3882.CrossRefGoogle Scholar
  48. 48.
    X. Dong, X. Ji, H. Wu, L. Zhao, J. Li, and W. Yang (2009). J. Phys. Chem. C 113, 6573–6576.CrossRefGoogle Scholar
  49. 49.
    Y. Qin, X. Ji, J. Jing, H. Liu, H. Wu, and W. Yang (2010). Colloids Surf. A Physicochem. Eng. Asp. 372, 172–176.CrossRefGoogle Scholar
  50. 50.
    S. Agnihotri, S. Mukherji, and S. Mukherji (2014). RSC Adv. 4, 3974–3983.CrossRefGoogle Scholar
  51. 51.
    A. A. AbdelHamid, M. A. Al-Ghobashy, M. Fawzy, M. B. Mohamed, and M. M. S. A. Abdel-Mottaleb (2013). ACS Sustain. Chem. Eng. 1, 1520–1529.CrossRefGoogle Scholar
  52. 52.
    T. Sinha and M. Ahmaruzzaman (2015). J. Colloid Interface Sci. 453, 115–131.CrossRefGoogle Scholar
  53. 53.
    B. Ankamwar, V. Kamble, U. K. Sur, and C. Santra (2016). Appl. Surf. Sci. 366, 275–283.CrossRefGoogle Scholar
  54. 54.
    A. Ahmad, Y. Wei, F. Syed, M. Imran, Z. U. H. Khan, K. Tahir, A. U. Khan, M. Raza, Q. Khan, and Q. Yuan (2015). RSC Adv. 5, 99364–99377.CrossRefGoogle Scholar
  55. 55.
    B. Stuart Infrared Spectroscopy (Wiley Online Library, Chichester, 2005).CrossRefGoogle Scholar
  56. 56.
    B. H. Stuart Organic Molecules, in Infrared Spectroscopy: Fundamentals and Applications, (John Wiley & Sons, Ltd, Chichester, UK, 2004) pp. 71–93.CrossRefGoogle Scholar
  57. 57.
    J. Y. Song, H.-K. Jang, and B. S. Kim (2009). Process Biochem. 44, 1133–1138.CrossRefGoogle Scholar
  58. 58.
    B. Vellaichamy and P. Periakaruppan (2015). RSC Adv. 5, 105917–105924.CrossRefGoogle Scholar
  59. 59.
    V. Kumar, S. C. Yadav, and S. K. Yadav (2010). J. Chem. Technol. Biotechnol. 85, 1301–1309.CrossRefGoogle Scholar
  60. 60.
    A. K. Suresh, M. J. Doktycz, W. Wang, J. W. Moon, B. Gu, H. M. Meyer 3rd, D. K. Hensley, D. P. Allison, T. J. Phelps, and D. A. Pelletier (2011). Acta Biomater. 7, 4253–4258.CrossRefGoogle Scholar
  61. 61.
    J. Tang, Z. Shi, R. M. Berry, and K. C. Tam (2015). Ind. Eng. Chem. Res. 54, 3299–3308.CrossRefGoogle Scholar
  62. 62.
    P. Liu and M. Zhao (2009). Appl. Surf. Sci. 255, 3989–3993.CrossRefGoogle Scholar
  63. 63.
    J. A. Johnson, J. J. Makis, K. A. Marvin, S. E. Rodenbusch, and K. J. Stevenson (2013). J. Phys. Chem. C 117, 22644–22651.CrossRefGoogle Scholar
  64. 64.
    Q. Geng and J. Du (2014). RSC Adv. 4, 16425.CrossRefGoogle Scholar
  65. 65.
    J.-H. Noh and R. Meijboom (2014). Appl. Surf. Sci. 320, 400–413.CrossRefGoogle Scholar
  66. 66.
    S. R. Khan, Z. H. Farooqi, Z. Waheeduz, A. Ali, R. Begum, F. Kanwal, and M. Siddiq (2016). Mater. Chem. Phys. 171, 318–327.CrossRefGoogle Scholar
  67. 67.
    P. Zhao, X. Feng, D. Huang, G. Yang, and D. Astruc (2015). Coord. Chem. Rev. 287, 114–136.CrossRefGoogle Scholar
  68. 68.
    R. K. Narayanan and S. J. Devaki (2015). Ind. Eng. Chem. Res. 54, 1197–1203.CrossRefGoogle Scholar
  69. 69.
    M. M. Khan, J. Lee, and M. H. Cho (2014). J. Ind. Eng. Chem. 20, 1584–1590.CrossRefGoogle Scholar
  70. 70.
    V. K. Vidhu and D. Philip (2014). Micron 56, 54–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Dhananjayan Badma Priya
    • 1
  • Indira Viswambaran Asharani
    • 1
  1. 1.Department of Chemistry, School of Advanced SciencesVIT UniversityVelloreIndia

Personalised recommendations