Skip to main content
Log in

A Novel Sulfonated Poly Phenylene Oxide-Poly Vinylchloride/ZnO Cation-Exchange Membrane Applicable in Refining of Saline Liquids

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Novel cation-exchange nanocomposite membranes was fabricated by in-situ formation of zinc oxide nanoparticles in a blend containing sulfonated polyvinylchloride and sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) by a simple chemical method. Also, some nanocomposite samples were prepared by incorporation of previously synthesized ZnO nanoparticles into the casting solution (ex-situ method). The prepared nanocomposite samples and nanoparticles were characterized by several techniques including water contact angle measurements, scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The water contact angle measurements confirmed the increased hydrophilicity of the nanocomposite membranes. The SEM surface microphotographs indicated that ZnO nanoparticles were uniformly dispersed throughout the polymeric matrix. The influence of additive concentration on electrochemical and physicochemical properties of prepared ion-exchange nanocomposite membranes was studied. Various investigations revealed that the in-situ preparation of ZnO nanoparticles in the membrane structure had a considerable effect on the membrane efficiency and could improve the transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A:

Membrane surface area (m2)

a:

Milli-equivalent of ion-exchange groups in membrane (meq)

a1, a2 :

Ions electrolytic activities

C.E:

Current efficiency

Cmean :

Mean concentration of electrolytes (M)

d:

Membrane thickness (m)

Em :

Membrane potential (mV)

F:

Faraday constant

FT-IR:

Fourier transform infrared spectroscopy

I:

Current intensity (A)

IEC:

Ion-exchange capacity

IEMS:

Ion-exchange membranes

n, Zi :

Electrovalence of ion

Ps :

Membrane ionic permselectivity

R:

Universal gases constant (J mol−1 K−1)

r:

Specific electrical resistance (Ω cm2)

R1 and R2 :

Electrical resistance (Ω)

Rm :

Membrane resistance (Ω)

SEM:

Scanning electron microscope

SPPO:

Sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)

SPVC:

Sulfonated polyvinylchloride

T:

Temperature (K)

t:

Time (min)

THF:

Tetrahydrofuran

t mi ; t0 :

Transport number of counter ions in membrane phase; in solution

Y:

Concentration of fixed charge on the membrane surface

Δn:

Number of transported moles through membrane

References

  1. X. Zuo, S. Yu, X. Xu, J. Xu, R. Bao, and X. Yan (2009). J. Membr. Sci. 340, 206.

    Article  CAS  Google Scholar 

  2. L. J. Banasiak, B. Van der Bruggen, and A. I. Schafer (2011). Chem. Eng. J. 166, 233.

    Article  CAS  Google Scholar 

  3. F. Karimi, S. N. Ashrafizadeh, and F. Mohammadi (2012). Chem. Eng. J. 183, 402.

    Article  CAS  Google Scholar 

  4. H. J. Lee, M. K. Hong, and S. H. Moon (2012). Desalination 284, 221.

    Article  CAS  Google Scholar 

  5. J. Luo, C. Wu, T. Xu, and Y. Wu (2011). J. Membr. Sci. 366, 1.

    Article  CAS  Google Scholar 

  6. M. C. Martí-Calatayud, D. C. Buzzi, M. García-Gabaldón, A. M. Bernardes, J. A. S. Tenório, and V. Pérez-Herranz (2014). J. Membr. Sci. 466, 45.

    Article  Google Scholar 

  7. S. H. Moon and S. H. Yun (2014). Curr. Opin. Chem. Eng. 4, 25.

    Article  Google Scholar 

  8. P. V. Vyas, B. G. Shah, G. S. Trivedi, P. Ray, S. K. Adhikary, and R. Rangarajan (2001). J. Membr. Sci. 187, 39.

    Article  CAS  Google Scholar 

  9. P. V. Vyas, B. G. Shah, G. S. Trivedi, P. Ray, S. K. Adhikary, and R. Rangarajan (2000). React. Funct. Polym. 44, 101.

    Article  CAS  Google Scholar 

  10. C. Vogel and J. Meier-Haack (2014). Desalination 342, 156.

    Article  CAS  Google Scholar 

  11. K. A. Mauritz (1998). Mater. Sci. Eng. C 6, 121.

    Article  Google Scholar 

  12. M. L. Sforca, I. V. P. Yoshida, and S. P. Nunes (1999). J. Membr. Sci. 159, 197.

    Article  CAS  Google Scholar 

  13. R. K. Nagarale, G. S. Gohil, V. K. Shahi, G. S. Trivedi, and R. Rangarajan (2004). J. Colloid Interface Sci. 277, 162.

    Article  CAS  Google Scholar 

  14. M. M. A. Khan (2012). J. Appl. Polym. Sci. 124, 338.

    Article  Google Scholar 

  15. P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie, and Z. F. Liu (2012). Sci. Total Environ. 424, 1.

    Article  CAS  Google Scholar 

  16. L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal (2013). Desalination 308, 15.

    Article  CAS  Google Scholar 

  17. A. R. Khodabakhshi, S. S. Madaeni, T. W. Xu, L. Wu, C. Wu, C. Li, W. Na, S. A. Zolanvari, A. Babayi, J. Ghasemi, S. M. Hosseini, and A. Khaledi (2012). Sep. Purif. Technol. 90, 10.

    Article  CAS  Google Scholar 

  18. T. W. Xu, W. H. Yang, and B. L. He (2002). Chin. J. Polym. Sci. 20, 53.

    CAS  Google Scholar 

  19. T. W. Xu, D. Wu, and L. Wu (2008). Prog. Polym. Sci. 33, 894.

    Article  CAS  Google Scholar 

  20. H. Yu and T. W. Xu (2006). J. Appl. Polym. Sci. 100, 2238.

    Article  CAS  Google Scholar 

  21. D. Wu, L. Wu, J. J. Woo, S. H. Yun, S. J. Seo, T. W. Xu, and S. H. Moon (2010). J. Membr. Sci. 348, 167.

    Article  CAS  Google Scholar 

  22. X. Zhang, Y. Chen, A. H. Konsowa, X. Zhu, and J. C. Crittenden (2009). Sep. Purif. Technol. 70, 71.

    Article  CAS  Google Scholar 

  23. L. Xu and H. K. Lee (2009). J. Chromatogr. A 1216, 6549.

    Article  CAS  Google Scholar 

  24. M. Yousefi, E. Noori, D. Ghanbari, M. Salavati-Niasari, and T. Gholami (2014). J. Clust. Sci. 25, 397.

    Article  CAS  Google Scholar 

  25. R. Li, J. Pei, and C. Sun (2015). Constr. Build. Mater. 98, 656.

    Article  Google Scholar 

  26. P. G. Freire, R. H. O. Montes, F. C. Romeiro, S. C. S. Lemos, R. C. Lima, E. M. Richter, and R. A. A. Munoz (2016). Sens. Actuators B 223, 557.

    Article  CAS  Google Scholar 

  27. H. Esmailzadeh, P. Sangpourb, F. Shahraza, J. Hejazi, and R. Khaksar (2016). Mater. Sci. Eng. C 58, 1058.

    Article  CAS  Google Scholar 

  28. K. Girigoswami, M. Viswanathan, R. Murugesan, and A. Girigoswami (2015). Mater. Sci. Eng. C 56, 501.

    Article  CAS  Google Scholar 

  29. J. Archana, M. Navaneethan, and Y. Hayakawa (2016). Scr. Mater. 113, 163.

    Article  CAS  Google Scholar 

  30. A. Susanna, L. Armelao, E. Callone, S. Dirè, M. D’Arienzo, B. Di Credico, L. Giannini, T. Hanel, F. Morazzoni, and R. Scotti (2015). Chem. Eng. J. 275, 245.

    Article  CAS  Google Scholar 

  31. T. W. Xu, W. H. Yang, and B. L. He (2001). Chem. Eng. Sci. 56, 5343.

    Article  CAS  Google Scholar 

  32. F. Heidary, A. Nemati Kharat, and A. R. Khodabakhshi (2016). J. Clust. Sci. 27, 193.

    Article  CAS  Google Scholar 

  33. H. Strathmann Membrane Separations Technology: Principles and Applications (Elsevier, New York, 1995).

    Google Scholar 

  34. S. Bahadorikhalili, L. Ma’mani, H. Mahdavi, and A. Shafiee (2015). RSC Adv. 5, 71297.

    Article  CAS  Google Scholar 

  35. X. Li, Z. Wang, H. Lu, C. Zhao, H. Na, and C. Zhao (2005). J. Membr. Sci. 254, 147.

    Article  CAS  Google Scholar 

  36. R. K. Nagarale, V. K. Shahi, and R. Rangarajan (2005). J. Membr. Sci. 248, 37.

    Article  CAS  Google Scholar 

  37. G. S. Gohil, V. V. Binsu, and V. K. Shahi (2006). J. Membr. Sci. 280, 210.

    Article  CAS  Google Scholar 

  38. J. Schauer, V. Kudela, K. Richau, and R. Mohr (2006). Desalination 198, 256.

    Article  CAS  Google Scholar 

  39. L. Lebrun, E. Da Silva, G. Pourcelly, and M. Métayer (2003). J. Membr. Sci. 227, 95.

    Article  CAS  Google Scholar 

  40. D. R. Lide CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2010).

    Google Scholar 

  41. A. R. Khodabakhshi, S. S. Madaeni, and S. M. Hosseini (2011). Sep. Purif. Technol. 77, 220.

    Article  CAS  Google Scholar 

  42. B. Heidari, M. Ansari, A. Hoseinabadi, H. Jiriaee, and F. Heidary (2016). J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-016-5625-8.

    Google Scholar 

  43. Y. Tanaka Ion Exchange Membranes: Fundamentals and Applications, Membrane Science and Technology Series (Elsevier, Amsterdam, 2007).

    Google Scholar 

  44. R. K. Nagarale, G. S. Gohil, and V. K. Shahi (2006). Adv. Colloid Interface Sci. 119, 97.

    Article  CAS  Google Scholar 

  45. A. Shau, P. De, and P. Ray (2016). Int. J. Hydrog. Energy 41, 10292.

    Article  CAS  Google Scholar 

  46. M. Y. Kariduraganavar, R. K. Nagarale, A. A. Kittur, and S. S. Kulkarni (2006). Desalination 197, 225.

    Article  CAS  Google Scholar 

  47. W. Wan, T. J. Pepping, T. Banerji, S. Chaudhari, and D. E. Giammar (2011). Water Res. 45, 384.

    Article  CAS  Google Scholar 

  48. V. K. Shahi, R. Prakash, G. Ramachandraiah, R. Rangarajan, and D. Vasudevan (1999). J. Colloid Interface Sci. 216, 179.

    Article  CAS  Google Scholar 

  49. R. K. Nagarale, V. K. Shahi, S. K. Thampy, and R. Rangarajan (2004). React. Funct. Polym. 61, 131.

    Article  CAS  Google Scholar 

  50. F. Heidary, A. R. Khodabakhshi, and A. Nemati Kharat (2016). Korean J. Chem. Eng. 33, 1380.

    Article  CAS  Google Scholar 

  51. S. A. Patil and T. M. Aminabhavi (2006). J. Membr. Sci. 281, 95.

    Article  Google Scholar 

  52. R. Shahabadi, M. Abdollahi, and A. Sharif (2015). Int. J. Hydrog. Energy 40, 3749.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Laboratory of Functional Membranes (University of Science and Technology of China) for providing SPPO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farhad Heidary or Ali Reza Khodabakhshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidary, F., Khodabakhshi, A.R. & Ghanbari, D. A Novel Sulfonated Poly Phenylene Oxide-Poly Vinylchloride/ZnO Cation-Exchange Membrane Applicable in Refining of Saline Liquids. J Clust Sci 28, 1489–1507 (2017). https://doi.org/10.1007/s10876-017-1156-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1156-6

Keywords

Navigation