Skip to main content

One-Pot Synthesis of Dysprosium Oxide Nano-Sheets: Antimicrobial Potential and Cyotoxicity on A549 Lung Cancer Cells

Abstract

The present work deals with green synthesis of dysprosium oxide nano-sheets (Dy2O3 NS) using Syzygium travancoricum leaf extract. Synthesized NS were characterized by UV–VIS–DRS, ATR-FT-IR, PL, Raman spectroscopy, XRD, TEM with EDX and XPS analysis. UV–VIS–DRS analysis showed the absorption peak at 355 nm and band gap value of 4.8 eV. ATR-FT-IR analysis was performed to analyze the biomolecules responsible for formation of Dy2O3 NS. Micro-Raman analysis showed a peak at 373 cm−1. XRD confirmed the presence of Dy2O3 NS with body-centered cubic structure. TEM images revealed the presence of nano sheets with size ranging from 100 to 200 nm and EDX analysis showed Dy and O elements and no other elements were detected, which indicates the purity of the resultant Dy2O3 NS. The synthesized Dy2O3 NS were tested against different bacterial and fungal species as well as cytotoxic agents on A549 lung cancer cells. The antimicrobial activity of Dy2O3 NS was significant on all the tested species. Cytotoxicity of Dy2O3 NS was revealed against A549 lung cancer cell lines in a dose-dependent manner. The results suggest that the synthesized Dy2O3 NS may be a promising candidate in the field of biomedical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    K. Gopinath, V. Karthika, C. Sundaravadivelan, S. Gowri, and A. Arumugam (2015). J. Nanostruct. Chem. 5, 295–303.

    Article  Google Scholar 

  2. 2.

    K. Han, Y. Zhang, T. Cheng, Z. Fang, M. Gao, Z. Xu, and X. Yin (2009). Mater. Chem. Phys. 114, 430–433.

    CAS  Article  Google Scholar 

  3. 3.

    B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Binks, and A. Jha (2013). Laser Phys. Lett. 10, 085805.

    Article  Google Scholar 

  4. 4.

    M. S. Niasari, J. Javidi, F. Davar, and A. A. Fazl (2010). J. Alloy. Compd. 503, 500–506.

    Article  Google Scholar 

  5. 5.

    K. Kattel, J. Y. Park, W. Xu, H. G. Kim, E. J. Lee, B. A. Bony, W. C. Heo, S. Jin, J. S. Baeck, Y. Chang, T. J. Kim, J. E. Bae, K. S. Chae, and G. H. Lee (2012). Biomaterials 33, 3254–3261.

    CAS  Article  Google Scholar 

  6. 6.

    A. S. Dhepe and A. B. Zade (2010). Anal. Chem. Ind. J. 9, 215–221.

    CAS  Google Scholar 

  7. 7.

    T. Yousefi, M. T. Mostaedi, A. Aghaei, and H. G. Mobtaker (2016). Rare Met. 35, 637–642.

    CAS  Article  Google Scholar 

  8. 8.

    J. G. Kang, J. S. Gwag, and Y. Sohn (2015). Ceram. Int. 41, 3999–4006.

    CAS  Article  Google Scholar 

  9. 9.

    T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian, and S. Yoshikawa (2006). J. Colloid Interf. Sci. 300, 219–224.

    CAS  Article  Google Scholar 

  10. 10.

    A. Zelati, A. Amirabadizadeh, A. Kompany, H. Salamati, and J. Sonier (2013). Indian J. Sci. Technol. 6, 5552–5558.

    CAS  Google Scholar 

  11. 11.

    M. Chandrasekhar, H. Nagabhushana, K. H. Sudheerkumar, N. Dhananjaya, S. C. Sharma, D. Kavyashree, C. Shivakumara, and B. M. Nagabhushana (2014). Mater. Res. Bull. 55, 237–245.

    CAS  Article  Google Scholar 

  12. 12.

    G. Benelli (2016). Parasitol. Res. 115, 23–34.

    Article  Google Scholar 

  13. 13.

    G. Benelli (2016). Enzyme Microb. Technol. 95, 58–68.

    CAS  Article  Google Scholar 

  14. 14.

    A. Anand, C. Srinivasa Rao, and P. Balakrishna (1999). Plant Cell Tissue Organ 56, 59–63.

    Article  Google Scholar 

  15. 15.

    C. Udhayavani, V. S. Ramchandran, and A. J. Honey (2013). NeBIO 4, 68–71.

    Google Scholar 

  16. 16.

    P. M. Shafi, M. K. Rosamma, K. Jamil, and P. S. Reddy (2002). Fitoterapia 73, 414–416.

    CAS  Article  Google Scholar 

  17. 17.

    R. Radha, R. Latha, and M. S. Swaminathan (2002). Flavour Fragr. J. 17, 352–354.

    CAS  Article  Google Scholar 

  18. 18.

    K. Gopinath, S. Kumaragura, K. Bhakyaraj, S. Thirumal, and A. Arumugam (2016). Superlattice Microstruct. 92, 100–110.

    CAS  Article  Google Scholar 

  19. 19.

    M. Chandrasekhar, D. V. Sunitha, N. Dhananjaya, H. Nagabhushana, S. C. Sharma, B. M. Nagabhushana, C. Shivakumara, and R. P. S. Chakradhar (2012). Mater. Res. Bull. 47, 2085–2094.

    CAS  Article  Google Scholar 

  20. 20.

    N. Krishna Chandar and R. Jayavel (2012). Physica E 44, 1315–1319.

    CAS  Article  Google Scholar 

  21. 21.

    J. A. Jimenez and J. B. Hockenbury (2013). J. Mater. Sci. 48, 6921–6928.

    CAS  Article  Google Scholar 

  22. 22.

    O. A. Al-Hartomy and M. Mujahid (2016). Am. J. Biol. Chem. 2, 17–22.

    Google Scholar 

  23. 23.

    N. M. Anaya, F. Solomon, and V. Oyanedel-Craver (2015). Environ. Sci. Nano 3, 67–73.

    Article  Google Scholar 

  24. 24.

    N. M. Anaya, F. Faghihzadeh, N. Ganji, G. Bothun, and V. Oyanedel-Craver (2016). Sci. Total Environ. 565, 841–848.

    CAS  Article  Google Scholar 

  25. 25.

    K. Hegde, S. K. Brar, M. Verma, and R. Y. Surampalli (2016). Nanotechnol. Environ. Eng. 1, 5.

    Article  Google Scholar 

  26. 26.

    A. S. HajaHameed, C. Karthikeyan, A. P. Ahamed, N. Thajuddin, N. S. Alharbi, S. A. Alharbi, and G. Ravi (2016). Sci. Rep. 6, 24312.

    Article  Google Scholar 

  27. 27.

    A. Arumugam, C. Karthikeyan, A. S. Haja Hameed, K. Gopinath, S. Gowri, and V. Karthika (2015). Mater. Sci. Eng., C 49, 408–415.

    CAS  Article  Google Scholar 

  28. 28.

    N. Lewinski, V. Colvin, and R. Drezek (2008). Small 4, 26–49.

    CAS  Article  Google Scholar 

  29. 29.

    M. Tarantola, D. Schneider, E. Sunnick, H. Adam, S. Pierrat, C. Rosman, V. Breus, C. Sonnichsen, T. Basche, J. Wegener, and A. Janshoff (2009). ACS Nano 3, 213.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciations to the Deanship of Scientific Research at King Saud University for its funding this Prolific Research Group (PRG-1437-36). G. Benelli is sponsored by PROAPI (PRAF 2015) and University of Pisa, Department of Agriculture, Food and Environment (Grant ID: COFIN2015_22). Funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. One of the authors K. Gopinath is highly grateful to thank Mr. C. Karthikeyan, Jamal Mohamed College, Trichy, Tamil Nadu, India, for helping to analyze the XRD and XPS results with standard fitting. We sincerely thank the KRIND Institute of Research and Development, Trichy, for helping in antimicrobial activity assays.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kasi Gopinath.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gopinath, K., Chinnadurai, M., Devi, N.P. et al. One-Pot Synthesis of Dysprosium Oxide Nano-Sheets: Antimicrobial Potential and Cyotoxicity on A549 Lung Cancer Cells. J Clust Sci 28, 621–635 (2017). https://doi.org/10.1007/s10876-016-1150-4

Download citation

Keywords

  • Green synthesis
  • Syzygium travancoricum
  • Micro-Raman analysis
  • UV–VIS–DRS, ATR-FT-IR