Journal of Cluster Science

, Volume 28, Issue 3, pp 1379–1392 | Cite as

Evaluation of Some Biosynthesized Silver Nanoparticles for Biomedical Applications: Hydrogen Peroxide Scavenging, Anticoagulant and Thrombolytic Activities

  • Agbaje LateefEmail author
  • Sunday A. Ojo
  • Joseph A. Elegbede
  • Musibau A. Azeez
  • Taofeek A. Yekeen
  • Akeem Akinboro
Original Paper


The present study examines the hydrogen peroxide scavenging, anticoagulant and thrombolytic activities of silver nanoparticles (AgNPs) that were biosynthesized using extracts obtained from spider cobweb (CB), pod (KP), seed (KS) and seed shell (KSS) of kolanut (Cola nitida). The nearly spherical shaped AgNPs, with surface plasmon resonance of 431.5–457.5 nm, were polydispersed having sizes of 3–50, 12–80, 8–50, and 5–40 nm for CB, KP, KS and KSS-AgNPs respectively. Hydrogen peroxide scavenging activities of 77–99.8% were obtained using 1–20 µg/ml of AgNPs. The particles prevented the coagulation of blood, and also showed thrombolytic activities of 55.76–89.83%, with KSS-AgNPs having the highest activity. Microscopic examination of the lyzed blood clot supported the thrombolytic activities. On the other hand, silver nitrate solution showed negligible activity of 1.92%, while thrombolysis of 7.55, 8.70, 8.93 and 30.19% were obtained for the extracts of KSS, CB, KS and KP respectively. The results herein presented showed potential biomedical applications of the biosynthesized AgNPs to scavenge free radicals and for the management of blood coagulation disorders and thrombotic diseases.


Biosynthesis Silver nanoparticles Anticoagulant activity Thrombolytic activity Blood coagulation disorders 



The provision of some facilities used in this investigation by the authority of LAUTECH, Ogbomoso, Nigeria is grateful acknowledged by A. Lateef.


  1. 1.
    S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17–28.CrossRefGoogle Scholar
  2. 2.
    G. Benelli (2016). Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol. Res. 115, 23–34.CrossRefGoogle Scholar
  3. 3.
    V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, and B. Sreedhar (2016). Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng., C 58, 36–43.CrossRefGoogle Scholar
  4. 4.
    M. Eugenio, N. Müller, S. Frasés, R. Almeida-Paes, L. M. T. Lima, L. Lemgruber, M. Farina, W. de Souza, and C. Sant’Anna (2016). Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Adv. 6, 9893–9904.CrossRefGoogle Scholar
  5. 5.
    H. Korbekandi, G. Asghari, M. R. Chitsazi, B. R. Najafi, A. Badii, and S. Iravani (2016). Green biosynthesis of silver nanoparticles using Althaea officinalis radix hydroalcoholic extract. Artif. Cells Nanomed. Biotechnol. 44, 209–215.CrossRefGoogle Scholar
  6. 6.
    A. Lateef and A. O. Adeeyo (2015). Green synthesis and antibacterial activities of silver nanoparticles using extracellular laccase of Lentinus edodes. Not. Sci. Biol. 7, 405–411.CrossRefGoogle Scholar
  7. 7.
    A. Lateef, S. A. Ojo, A. S. Akinwale, L. Azeez, E. B. Gueguim-Kana, and L. S. Beukes (2015). Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities. Biologia 70, 1295–1306.Google Scholar
  8. 8.
    P. Manivasagan, J. Venkatesan, K. Sivakumar, and S. K. Kim (2016). Actinobacteria mediated synthesis of nanoparticles and their biological properties: a review. Crit. Rev. Microbiol. 42, 209–221.CrossRefGoogle Scholar
  9. 9.
    D. Nayak, S. Ashe, P. R. Rauta, M. Kumari, and B. Nayak (2016). Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater. Sci. Eng., C 58, 44–52.CrossRefGoogle Scholar
  10. 10.
    T. J. Park, K. G. Lee, and S. Y. Lee (2016). Advances in microbial biosynthesis of metal nanoparticles. Appl. Microbiol. Biotechnol. 100, 521–534.CrossRefGoogle Scholar
  11. 11.
    S. V. P. Ramaswamy, S. Narendhran, and R. Sivaraj (2016). Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities. Bull. Mater. Sci. 39, 361–364.CrossRefGoogle Scholar
  12. 12.
    P. Singh, Y. J. Kim, D. Zhang, and D. C. Yang (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599.CrossRefGoogle Scholar
  13. 13.
    A. Lateef, I. A. Adelere, E. B. Gueguim-Kana, T. B. Asafa, and L. S. Beukes (2015). Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int. Nano Lett. 5, 29–35.CrossRefGoogle Scholar
  14. 14.
    I. A. Adelere and A. Lateef (2016). A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes and pigments. Nanotechnol. Rev. 5, 567–587.Google Scholar
  15. 15.
    A. Lateef, S. A. Ojo, and J. A. Elegbede (2016). The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnol. Rev. 5, 601–622.Google Scholar
  16. 16.
    A. Lateef, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, L. Azeez, S. A. Ojo, E. B. Gueguim-Kana, and L. S. Beukes (2016). Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J. Nanostruct. Chem. 6, 159–169.CrossRefGoogle Scholar
  17. 17.
    G. Rath, T. Hussain, G. Chauhan, T. Garg, and A. K. Goyal (2016). Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Target. 24, 520–529.CrossRefGoogle Scholar
  18. 18.
    V. Sivaranjani and P. Philominathan (2016). Synthesize of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Med. 12, 1–5.CrossRefGoogle Scholar
  19. 19.
    A. K. Rengan, A. B. Bukhari, A. Pradhan, R. Malhotra, R. Banerjee, R. Srivastava, and A. De (2015). In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett. 15, 842–848.CrossRefGoogle Scholar
  20. 20.
    R. Sriranjani, B. Srinithya, V. Vellingiri, P. Brindha, S. P. Anthony, A. Sivasubramanian, and M. S. Muthuraman (2016). Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. J. Mol. Liq. 220, 926–930.CrossRefGoogle Scholar
  21. 21.
    H. Daraee, A. Eatemadi, E. Abbasi, S. Fekri Aval, M. Kouhi, and A. Akbarzadeh (2016). Application of gold nanoparticles in biomedical and drug delivery. Artif. Cells Nanomed. Biotechnol. 44, 410–422.CrossRefGoogle Scholar
  22. 22.
    K. Ulbrich, K. Holá, V. Šubr, A. Bakandritsos, J. Tuček, and R. Zbořil (2016). Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116, 5338–5431.CrossRefGoogle Scholar
  23. 23.
    A. R. Chowdhuri, D. Bhattacharya, and S. K. Sahu (2016). Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans. 45, 2963–2973.CrossRefGoogle Scholar
  24. 24.
    V. Kravets, Z. Almemar, K. Jiang, K. Culhane, R. Machado, G. Hagen, A. Kotko, I. Dmytruk, K. Spendier, and A. Pinchuk (2016). Imaging of biological cells using luminescent silver nanoparticles. Nanoscale Res. Lett. 11, 1–9.CrossRefGoogle Scholar
  25. 25.
    X. Li, C. Wang, H. Tan, L. Cheng, G. Liu, Y. Yang, Y. Zhao, Y. Zhang, Y. Li, C. Zhang, and Y. Xiu (2016). Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques. Biomaterials 108, 71–80.CrossRefGoogle Scholar
  26. 26.
    P. C. Naha, K. C. Lau, J. C. Hsu, M. Hajfathalian, S. Mian, P. Chhour, L. Uppuluri, E. S. McDonald, A. D. Maidment, and D. P. Cormode (2016). Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography. Nanoscale 8, 13740–13754.CrossRefGoogle Scholar
  27. 27.
    M. K. Ballo, S. Rtimi, C. Pulgarin, N. Hopf, A. Berthet, J. Kiwi, P. Moreillon, J. M. Entenza, and A. Bizzini (2016). In vitro and in vivo effectiveness of an innovative silver–copper nanoparticle coating of catheters to prevent methicillin-resistant Staphylococcus aureus infection. Antimicrob. Agents Chemother. 60, 5349–5356.CrossRefGoogle Scholar
  28. 28.
    S. Shrivastava, T. Bera, S. K. Singh, G. Singh, P. Ramachandrarao, and D. Dash (2009). Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3, 1357–1364.CrossRefGoogle Scholar
  29. 29.
    B. S. Harish, K. B. Uppuluri, and V. Anbazhagan (2015). Synthesis of fibrinolytic active nanoparticles using wheat bran xylan as a reducing and stabilizing agent. Carbohydr. Polym. 132, 104–110.CrossRefGoogle Scholar
  30. 30.
    P. Singh, Y. J. Kim, and D. C. Yang (2015). A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif. Cells Nanomed. Biotechnol. 44, 1949–1957.CrossRefGoogle Scholar
  31. 31.
    M. A. Azeez, A. Lateef, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, E. B. Gueguim-Kana, and L. S. Beukes (2016). Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents. J. Clust. Sci.. doi: 10.1007/s10876-016-1055-2.Google Scholar
  32. 32.
    H. K. Kim, M. J. Choi, S. H. Cha, Y. K. Koo, S. H. Jun, S. Cho, and Y. Park (2013). Earthworm extracts utilized in the green synthesis of gold nanoparticles capable of reinforcing the anticoagulant activities of heparin. Nanoscale Res. Lett. 8, 1–7.CrossRefGoogle Scholar
  33. 33.
    A. Lateef, M. A. Akande, M. A. Azeez, S. A. Ojo, B. I. Folarin, E. B. Gueguim-Kana, and L. S. Beukes (2016). Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (Synsepalum dulcificum) for antimicrobial, catalytic, anti-coagulant and thrombolytic applications. Nanotechnol. Rev. 5, 507–520.Google Scholar
  34. 34.
    A. Lateef, M. A. Akande, S. A. Ojo, B. I. Folarin, E. B. Gueguim-Kana, and L. S. Beukes (2016). Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anti-coagulant and thrombolytic applications. 3 Biotech 6, 140.CrossRefGoogle Scholar
  35. 35.
    A. Lateef, S. A. Ojo, and S. M. Oladejo (2016). Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13. Process Biochem. 51, 1406–1412.CrossRefGoogle Scholar
  36. 36.
    S. A. Ojo, A. Lateef, M. A. Azeez, S. M. Oladejo, A. S. Akinwale, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, E. B. Gueguim-Kana, and L. S. Beukes (2016). Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans. Nanobiosci. 15, 433–442.CrossRefGoogle Scholar
  37. 37.
    A. Lateef, S. A. Ojo, B. I. Folarin, E. B. Gueguim-Kana, and L. S. Beukes (2016). Kola nut (Cola nitida) mediated synthesis of silver–gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications. J. Cluster Sci. 27, 1561–1577.CrossRefGoogle Scholar
  38. 38.
    A. Lateef, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, F. E. Ajetomobi, E. B. Gueguim-Kana, and L. S. Beukes (2015). Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antimicrobial activities. BioNanoSci. 5, 196–205.CrossRefGoogle Scholar
  39. 39.
    A. Lateef, S. A. Ojo, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, E. B. Gueguim-Kana, and L. S. Beukes (2016). Cobweb as novel biomaterial for the green and ecofriendly synthesis of silver nanoparticles. Appl. Nanosci. 6, 863–874.CrossRefGoogle Scholar
  40. 40.
    A. Lateef, M. A. Azeez, T. B. Asafa, T. A. Yekeen, A. Akinboro, I. C. Oladipo, L. Azeez, S. E. Ajibade, S. A. Ojo, E. B. Gueguim-Kana, and L. S. Beukes (2016). Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: antibacterial, antioxidant activities and application as a paint additive. J. Taibah Univ. Sci. 10, 551–562.CrossRefGoogle Scholar
  41. 41.
    S. Bhakya, S. Muthukrishnan, M. Sukumaran, and M. Muthukumar (2016). Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 6, 755–766.CrossRefGoogle Scholar
  42. 42.
    C. S. Devi, V. Mohanasrinivasan, A. Tarafder, E. Shishodiya, B. Vaishnavi, and S. JemimahNaine (2016). Combination of clot buster enzymes and herbal extracts: a new alternative for thrombolytic drugs. Biocatal. Agric. Biotechnol. 8, 152–157.Google Scholar
  43. 43.
    S. Shankar, L. Jaiswal, R. S. L. Aparna, and R. G. S. V. Prasad (2014). Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Lett. 137, 75–78.CrossRefGoogle Scholar
  44. 44.
    A. H. Simmons, C. A. Michal, and L. W. Jelinski (1996). Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87.CrossRefGoogle Scholar
  45. 45.
    H. Roozbahani, M. Asmar, N. Ghaemi, and K. Issazadeh (2014). Evaluation of antimicrobial activity of spider silk Pholcus phalangioides against two bacterial pathogens in food borne. Int. J. Adv. Biol. Biomed. Res. 2, 2197–2199.Google Scholar
  46. 46.
    L. E. Higgins, M. A. Townley, E. K. Tillinghast, and M. A. Rankin (2001). Variation in the chemical composition of orb webs built by the spider Nephila clavipes (Araneae, Tetragnathidae). J. Arachnol. 29, 82–94.CrossRefGoogle Scholar
  47. 47.
    D. Porter, F. Vollrath, and Z. Shao (2005). Predicting the mechanical properties of spider silk as a model nanostructural polymer. Eur. Phys. J. E 16, 199–206.CrossRefGoogle Scholar
  48. 48.
    A. C. Odebode (1996). Phenolic compounds in the kola nut (Cola nitida and Cola acuminata) (Sterculiaceae) in Africa. Rev. Biol. Trop. 44, 513–515.Google Scholar
  49. 49.
    B. B. Babatunde and R. A. Hamzat (2005). Effects of feeding graded levels of kolanut husk meal on the performance of cockerels. Niger. J. Anim. Prod. 32, 61–66.Google Scholar
  50. 50.
    E. U. Asogwa, J. C. Anikwe, and F. C. Ihokwunye (2006). Kola production and utilization for economic development. Afr. Sci. 7, 4–5.Google Scholar
  51. 51.
    C. Orwa, A. Mutua, R. Kindt, R. Jamnadass, S. Anthony, Agro-forestry tree database: a tree reference and selection guide version 4.0, 2009, Accessed on 19 June 2015.
  52. 52.
    E. A. Dewole, D. F. A. Dewumi, J. Y. T. Alabi, and A. Adegoke (2013). Proximate and phytochemical of Cola nitida and Cola acuminata. Pak. J. Biol. Sci. 16, 1593–1596.CrossRefGoogle Scholar
  53. 53.
    R. Mata, J. R. Nakkala, and S. R. Sadras (2015). Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater. Sci. Eng., C 51, 216–225.CrossRefGoogle Scholar
  54. 54.
    I. Gülçin, M. Elmastas, and H. Y. Aboul-Enein (2007). Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies. Phytother. Res. 21, 354–361.CrossRefGoogle Scholar
  55. 55.
    H. F. Chang and L. L. Yang (2012). Radical-scavenging and rat liver mitochondria lipid peroxidative inhibitory effects of natural flavonoids from traditional medicinal herbs. J. Med. Plants Res. 6, 997–1006.Google Scholar
  56. 56.
    S. Raghavan, H. G. Kristinsson, and C. Leeuwenburgh (2008). Radical scavenging and reducing ability of tilapia (Oreochromis niloticus) protein hydrolysates. J. Agric. Food Chem. 56, 10359–10367.CrossRefGoogle Scholar
  57. 57.
    H. C. Chang and J. A. A. Ho (2015). Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles. Anal. Chem. 87, 10362–10367.CrossRefGoogle Scholar
  58. 58.
    Y. Sun, K. He, Z. Zhang, A. Zhou, and H. Duan (2015). Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene–carbon nanotube hybrid paper electrode. Biosens. Bioelectr. 68, 358–364.CrossRefGoogle Scholar
  59. 59.
    P. M. Nia, W. P. Meng, and Y. Alias (2015). Hydrogen peroxide sensor: uniformly decorated silver nanoparticles on polypyrrole for wide detection range. Appl. Surf. Sci. 357, 1565–1572.CrossRefGoogle Scholar
  60. 60.
    Y. Tian, Y. Liu, W. Wang, X. Zhang, and W. Peng (2015). Sulfur-doped graphene-supported Ag nanoparticles for nonenzymatic hydrogen peroxide detection. J. Nanoparticle Res. 17, 1–9.CrossRefGoogle Scholar
  61. 61.
    L. Wang, S. Ma, B. Yang, W. Cao, and X. Han (2015). Morphology-controlled synthesis of Ag nanoparticle decorated poly (o-phenylenediamine) using microfluidics and its application for hydrogen peroxide detection. Chem. Eng. J. 268, 102–108.CrossRefGoogle Scholar
  62. 62.
    D. Liu, Q. Guo, X. Zhang, H. Hou, and T. You (2015). PdCo alloy nanoparticle—embedded carbon nanofiber for ultrasensitive nonenzymatic detection of hydrogen peroxide and nitrite. J. Colloid Interf. Sci. 450, 168–173.CrossRefGoogle Scholar
  63. 63.
    K. Kalishwaralal, V. Deepak, S. R. K. Pandian, M. M. Kottaisamy, S. BarathManiKanth, B. Kartikeyan, and S. Gurunathan (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerf. 77, 257–262.CrossRefGoogle Scholar
  64. 64.
    World Health Organization, Global status report on non-communicable diseases, 2011, Geneva, Accessed on 17 October 2016.
  65. 65.
    M. J. Uddin, T. B. Emran, A. K. Nath, A. Jenny, M. Dutta, and M. M. Morshed (2013). Thrombolytic activity of Spilienthes calva and Leucas zeylanica. Mol. Clin. Pharm. 4, 32–37.Google Scholar
  66. 66.
    I. Cicha (2015). Thrombosis, novel nanomedical concepts of diagnosis and treatment. World J. Cardiol. 7, 434–441.Google Scholar
  67. 67.
    A. N. Ilinskaya and M. A. Dobrovolskaia (2013). Nanoparticles and the blood coagulation system. Part I: benefits of nanotechnology. Nanomed. 8, 773–784.CrossRefGoogle Scholar
  68. 68.
    J. R. McCarthy, I. Y. Sazonova, S. S. Erdem, V. Hara, B. D. Thompson, P. Patel, I. Botnaru, C. P. Lin, G. L. Reed, R. Weissleder, and F. A. Jaffer (2012). Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy. Nanomed. 7, 1017–1028.CrossRefGoogle Scholar
  69. 69.
    J. Y. Kim, J. H. Ryu, D. Schellingerhout, I. C. Sun, S. K. Lee, S. Jeon, J. Kim, I. C. Kwon, M. Nahrendorf, C. H. Ahn, and K. Kim (2015). Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles. Theranostics 5, 1098–1114.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Agbaje Lateef
    • 1
    • 2
    • 3
    Email author
  • Sunday A. Ojo
    • 2
    • 3
  • Joseph A. Elegbede
    • 2
    • 3
  • Musibau A. Azeez
    • 1
    • 3
  • Taofeek A. Yekeen
    • 1
    • 3
  • Akeem Akinboro
    • 1
    • 3
  1. 1.Nanotechnology Research Group (NANO+)Ladoke Akintola University of TechnologyOgbomosoNigeria
  2. 2.Laboratory of Industrial Microbiology and NanobiotechnologyLadoke Akintola University of TechnologyOgbomosoNigeria
  3. 3.Department of Pure and Applied BiologyLadoke Akintola University of TechnologyOgbomosoNigeria

Personalised recommendations