Skip to main content
Log in

A New 2-D Inorganic–Organic Hybrid Polyoxometalate Based on Mono-Cu-Substituted [CuSiW11O39] 6n n Chains and [Cu(en)2]2+ Bridges

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A new organic–inorganic hybrid polyoxometalate H2[Cu(en)2(H2O)]2[Cu(en)2]{[Cu(en)2]3 (CuSiW11O39)2}·6H2O (1) (en = ethylenediamine) have been hydrothermally synthesized and characterized by IR spectrum, thermogravimetric analysis, power X-ray diffraction and single-crystal X-ray diffraction. Crystal data for 1: monoclinic, P21/c, a = 18.8077(3) Å, b = 23.0703(5) Å, c = 26.0723(6) Å, β = 96.438(2)°, Z = 4. Single-crystal X-ray diffraction analysis revealed that 1 exhibits a 2-dimensional network constructed from mono-Cu-substituted [CuSiW11O39] 6n n chains and [Cu(en)2]2+ bridges.

Graphical Abstract

A new organic–inorganic hybrid polyoxometalate H2[Cu(en)2(H2O)]2[Cu(en)2]{[Cu(en)2]3(CuSiW11O39)2}·6H2O (1) (en = ethylenediamine) have been hydrothermally synthesized and characterized, which exhibits a 2-dimensional network constructed from mono-Cu-substituted [CuSiW11O39] 6n n chains and [Cu(en)2]2+ bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Artero, A. Proust, P. Herson, F. Villain, C. Moulin, and P. Gouzerh (2003). J. Am. Chem. Soc. 125, 11156.

    Article  CAS  Google Scholar 

  2. C. Besson, Z. Q. Huang, Y. V. Geletii, S. Lense, K. I. Hardcastle, D. G. Musaev, T. Q. Lian, A. Proustac, and C. L. Hill (2010). Chem. Commun. 46, 2784.

    Article  CAS  Google Scholar 

  3. K. Kamata, Y. Nakagawa, K. Yamaguchi, and N. Mizuno (2008). J. Am. Chem. Soc. 130, 15304.

    Article  CAS  Google Scholar 

  4. D. B. Dang, Y. Bai, C. He, J. Wang, C. Y. Duan, and J. Y. Niu (2010). Inorg. Chem. 49, 1280.

    Article  CAS  Google Scholar 

  5. Y. H. Guo and C. W. Hu (2007). J. Mol. Catal. A 262, 136.

    Article  CAS  Google Scholar 

  6. C. Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren, and Z. M. Su (2009). J. Am. Chem. Soc. 131, 1883.

    Article  CAS  Google Scholar 

  7. R. D. Gall, C. L. Hill, and J. E. Walker (1996). Chem. Mater. 8, 2523.

    Article  CAS  Google Scholar 

  8. T. P. Hu, Y. Q. Zhao, Z. Jagličić, K. Yu, X. P. Wang, and D. Sun (2015). Inorg. Chem. 54, 7415.

    Article  CAS  Google Scholar 

  9. L. Y. Guo, M. Jagodič, S. Y. Zeng, Z. Wang, Z. Q. Shi, X. P. Wang, C. H. Tung, and D. Sun (2016). Dalton Trans. 45, 8404.

    Article  CAS  Google Scholar 

  10. T. P. Hu, Y. Q. Zhao, K. Mei, S. J. Lin, X. P. Wang, and D. Sun (2015). CrystEngComm. 17, 5947.

    Article  CAS  Google Scholar 

  11. C. L. Hill (1998). Chem. Rev. 98, 1.

    Article  CAS  Google Scholar 

  12. J. T. Rhule, C. L. Hill, and D. A. Judd (1998). Chem. Rev. 98, 327.

    Article  CAS  Google Scholar 

  13. X. Wang, J. Liu, and M. Pope (2003). Dalton Trans. 5, 957.

    Article  Google Scholar 

  14. A. Proust, R. Thouvenot, and P. Gouzerh (2008). Chem. Commun. 16, 1837.

    Article  Google Scholar 

  15. J. Zhang, Y. F. Song, L. Cronin, and T. B. Liu (2008). J. Am. Chem. Soc. 130, 14408.

    Article  CAS  Google Scholar 

  16. J. Zhang, J. Hao, Y. G. Wei, F. P. Xiao, P. H. Yin, and L. S. Wang (2010). J. Am. Chem. Soc. 132, 14.

    Article  CAS  Google Scholar 

  17. P. Mialane, A. Dolbecq, and F. Sécheresse (2006). Chem. Commun. 33, 3477.

    Article  Google Scholar 

  18. B. S. Bassil, S. S. Mal, M. H. Dickman, U. Kortz, H. Oelrich, and L. Walder (2008). J. Am. Chem. Soc. 130, 6696.

    Article  CAS  Google Scholar 

  19. X. Fang, P. Kögerler, L. Isaacs, S. Uchida, and N. Mizuno (2009). J. Am. Chem. Sci 13, 1432.

    Google Scholar 

  20. J. W. Zhao, H. P. Jia, J. Zhang, S. T. Zheng, and G. Y. Yang (2007). Chem. Eur. J. 13, 10030.

    Article  CAS  Google Scholar 

  21. Y. Y. Bao, L. H. Bi, and L. X. Wu (2011). J. Solid State Chem. 184, 546.

    Article  CAS  Google Scholar 

  22. S. T. Zheng, J. Zhang, and G. Y. Yang (2008). Angew. Chem. Int. Ed. 47, 3909.

    Article  CAS  Google Scholar 

  23. S. T. Zheng, J. Zhang, and G.-Y. Yang (2009). Angew. Chem. Int. Ed. 48, 7176.

    Article  CAS  Google Scholar 

  24. S. T. Zheng, J. Zhang, and G. Y. Yang (2010). J. Am. Chem. Soc. 132, 15102.

    Article  CAS  Google Scholar 

  25. S. T. Zheng, M. H. Wang, and G. Y. Yang (2007). Chem. Asian J. 2, 1380.

    Article  CAS  Google Scholar 

  26. X. X. Li, S. T. Zheng, J. Zhang, W. H. Fang, G. Y. Yang, and J. M. Clemente-Juan (2011). Chem. Eur. J. 17, 13032.

    Article  CAS  Google Scholar 

  27. X. X. Li, Y. X. Wang, R. H. Wang, C. Y. Cui, C. B. Tian, and G. Y. Yang (2016). Angew. Chem. Int. Ed. 55, 6462.

    Article  CAS  Google Scholar 

  28. X. X. Li, X. Ma, W. X. Zheng, Y. J. Qi, S. T. Zheng, and G. Y. Yang (2016). Inorg. Chem. 55, 8257.

    Article  CAS  Google Scholar 

  29. G. M. Sheldrick SADABS, program for Siemens area detector absorption corrections (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  30. G. M. Sheldrick SHELXS97, program for crystal structure solution (University of Göttingen, Germany, 1997).

    Google Scholar 

  31. G. M. Sheldrick SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Germany, 1997).

    Google Scholar 

  32. S. Reinoso, P. Vitoria, L. S. Felices, L. Lezama, and J. M. Gutiérrez-Zorrilla (2005). Chem. Eur. J. 11, 1538.

    Article  CAS  Google Scholar 

  33. J. R. Galán-Mascarós, C. Gimé nez-Saiz, S. Triki, C. J. Gómez-Garcia, E. Coronado, and L. Ouahab (1995). Angew. Chem. Int. Ed. 34, 1460.

    Article  Google Scholar 

  34. H. T. Evans, T. J. R. Weakley, and G. B. Jameson (1996). J. Chem. Soc. Dalton Trans. 12, 2537.

    Article  Google Scholar 

  35. L. S. Felices, P. Vitoria, J. M. Gutiérrez-Zorrilla, L. Lezama, and S. Reinoso (2006). Inorg. Chem. 45, 7748.

    Article  Google Scholar 

  36. B. Yan, Y. Xu, X. Bu, K. N. Goh, L. S. Chia, and G. D. Stucky (2001). J. Chem. Soc. Dalton Trans. 13, 29.

    Google Scholar 

  37. I. D. Brown and D. Altermatt (1985). Acta Crystallogr. Sect. B. 41, 244.

    Article  Google Scholar 

  38. R. Thouvenot, M. Fournier, R. Franck, and C. Rocchiccioli-Deltcheff (1984). Inorg. Chem. 23, 598.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (Grants 21571016, 91122028 and 50872133), the NSFC for Distinguished Young Scholars of China (Grant 20725101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Xiong Li or Guo-Yu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ci, PC., Zhang, Z., Yang, BF. et al. A New 2-D Inorganic–Organic Hybrid Polyoxometalate Based on Mono-Cu-Substituted [CuSiW11O39] 6n n Chains and [Cu(en)2]2+ Bridges. J Clust Sci 28, 1249–1257 (2017). https://doi.org/10.1007/s10876-016-1138-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1138-0

Keywords

Navigation