Journal of Cluster Science

, Volume 28, Issue 2, pp 825–837 | Cite as

Synthesis and Solid-State Structure of Cyclobutyltellurium(IV)-Containing Dimeric Tungstoarsenates(III)

  • Balamurugan Kandasamy
  • Bassem S. Bassil
  • Jens Beckmann
  • Banghao Chen
  • Naresh S. Dalal
  • Ulrich Kortz
Original Paper

Abstract

The cage-like cyclobutyltellurium(IV)-containing tungstoarsenate(III) dimers [(C4H8Te-OH)2(C4H8Te)6{As2W17O61(H2O)}2]14− (1) and [{(C4H8Te)2W2O5(H2O)2As2W19O67(H2O)}2]16− (2) were synthesized in moderately acidic aqueous medium by reaction of C4H8TeI2 with the lacunary tungstoarsenates(III) [B-α-AsW9O33]9− and [As2W19O67(H2O)]14−, respectively. Polyanion 1 was isolated as a mixed cesium-guanidinium salt Cs8.5(C(NH2)3)5.5[(C4H8TeOH)2(C4H8Te)6{As2W17O61(H2O)}2]·60H2O (1a), whereas 2 crystallized as a mixed cesium-potassium salt Cs9K7[{(C4H8Te)2W2O5(H2O)2As2W19O67(H2O)}2]·90H2O (2a). Single crystal X-ray analysis demonstrated that 1a and 2a crystallized in the triclinic space group \( P \bar{1} \), with a = 12.7738(8) Å, b = 18.7490(14) Å, c = 21.9831(14) Å, α = 111.155(4)o, β = 93.312(3)o, γ = 99.530(4) and Z = 1 for 1a and a = 19.309(6) Å, b = 24.674(8) Å, c = 26.071(8) Å, α = 63.218(17)°, β = 89.26(16)°, γ = 79.948(17)° and Z = 2 for 2a. The polyanion salts 1a and 2a were characterized by solid state NMR (1H, 13C, 125Te), FT-IR, TGA-DSC, and elemental analysis.

Keywords

Polyoxometalates Organotellurium Solid state NMR Synthesis Structure 

Supplementary material

10876_2016_1117_MOESM1_ESM.docx (3.8 mb)
XRD data in CIF format, FT-IR spectra (Fig. S1), and thermograms from room temperature to 1000 °C (Fig. S2). (DOCX 3919 kb)

References

  1. 1.
    M. T. Pope Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).CrossRefGoogle Scholar
  2. 2.
    M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. Engl. 30, 34.CrossRefGoogle Scholar
  3. 3.
    M. T. Pope and A. Müller (eds.) Polyoxometalates: From Platonic Solids to Antiretroviral Activity (Kluwer, Dordrecht, 1994).Google Scholar
  4. 4.
    Special Issue on Polyoxometalates; (ed.: C. L. Hill) (1998). Chem. Rev. 98.Google Scholar
  5. 5.
    M. T. Pope and A. Müller (eds.) Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications (Kluwer, Dordrecht, 2001).Google Scholar
  6. 6.
    M. T. Pope and T. Yamase (eds.) Polyoxometalate Chemistry for Nanocomposite Design (Kluwer, Dordrecht, 2002).Google Scholar
  7. 7.
    E. Coronado and P. Day (2004). Chem. Rev. 104, 5419.CrossRefGoogle Scholar
  8. 8.
    U. Kortz, A. Müller, J. van Slageren, J. Schnack, N. S. Dalal, and M. Dressel (2009). Coord. Chem. Rev. 253, 2315.CrossRefGoogle Scholar
  9. 9.
    M. T. Pope and U. Kortz (2012). Encycl. Inorg. Bioinorg. Chem. Google Scholar
  10. 10.
    C. Pichon, P. Mialane, A. Dolbecq, J. Marrot, E. Riviere, B. S. Bassil, U. Kortz, B. Keita, L. Nadjo, and F. Sécheresse (2008). Inorg. Chem. 47, 11120.CrossRefGoogle Scholar
  11. 11.
    M. Sadakane, Y. Iimuro, D. Tsukuma, B. S. Bassil, M. H. Dickman, U. Kortz, Y. Zhang, S. Ye, and W. Ueda (2008). Dalton Trans. 47, 6692.CrossRefGoogle Scholar
  12. 12.
    S. S. Mal, M. H. Dickman, and U. Kortz (2008). Chem. Eur. J 14, 9851.CrossRefGoogle Scholar
  13. 13.
    G. Al-Kadamany, F. Hussain, S. S. Mal, M. H. Dickman, N. Leclerc-Laronze, J. Marrot, E. Cadot, and U. Kortz (2008). Inorg. Chem. 47, 8574.CrossRefGoogle Scholar
  14. 14.
    S. Reinoso, M. H. Dickman, A. Praetorius, L. F. Piedra-Garza, and U. Kortz (2008). Inorg. Chem. 47, 8798.CrossRefGoogle Scholar
  15. 15.
    M. Barsukova, M. H. Dickman, E. Visser, S. S. Mal, and U. Kortz (2008). Z. Anorg. Allg. Chem. 634, 2423.CrossRefGoogle Scholar
  16. 16.
    B. S. Bassil, S. S. Mal, M. H. Dickman, U. Kortz, H. Oelrich, and L. Walder (2008). J. Am. Chem. Soc. 130, 6696.CrossRefGoogle Scholar
  17. 17.
    C. Tourné, A. Revel, G. Tourné, and M. Vendrell (1973). CR. Hebd. Seances Acad. Sci. Ser. C. 277, 643.Google Scholar
  18. 18.
    M. Leyrie, J. Martin-Frére, and G. Hervé (1974). C. R. Hebd. Seances Acad. Sci. Ser. C 279, 895.Google Scholar
  19. 19.
    M. Leyrie and G. Hervé (1978). Nouv. J. Chim. 2, 233.Google Scholar
  20. 20.
    W. Liu, R. Al-Oweini, K. Meadows, B. S. Bassil, Z. Lin, J. H. Christian, N. S. Dalal, A. M. Bossoh, I. M. Mbomekallé, P. de Oliveira, J. Iqbal, and U. Kortz (2016). Inorg. Chem. 55, 10936.CrossRefGoogle Scholar
  21. 21.
    U. Kortz, M. G. Savelieff, B. S. Bassil, B. Keita, and L. Nadjo (2002). Inorg. Chem. 41, 783.CrossRefGoogle Scholar
  22. 22.
    F. Robert, M. Leyrie, and G. Hervé (1982). Acta Crystallogr. Sect. B 38, 358.CrossRefGoogle Scholar
  23. 23.
    M. Bösing, I. Loose, H. Pohlmann, and B. Krebs (1997). Chem. Eur. J. 3, 1232.CrossRefGoogle Scholar
  24. 24.
    D. Rodewald, Y. Jeannin, and D. Nouveaux (1998). C. R. Acad. Sci. Paris Ser. IIc 1, 175.Google Scholar
  25. 25.
    I. Loose, E. Droste, M. Bösing, H. Pohlmann, M. H. Dickman, C. Rosu, M. T. Pope, and B. Krebs (1999). Inorg. Chem. 38, 2688.CrossRefGoogle Scholar
  26. 26.
    B. Krebs, E. Droste, M. Piepenbrink, and G. Vollmer (2000). C. R. Acad. Sci. Paris Ser. IIc 3, 205.Google Scholar
  27. 27.
    U. Kortz, N. K. Al- Kassem, M. G. Savelieff, N. A. Al Kadi, and M. Sadakane (2001). Inorg. Chem. 40, 4742.CrossRefGoogle Scholar
  28. 28.
    B. Botar, T. Yamase, and E. Ishikawa (2001). Inorg. Chem. Commun. 4, 551.CrossRefGoogle Scholar
  29. 29.
    P. Mialane, J. Marrot, E. Rivière, J. Nebout, and G. Hervé (2001). Inorg. Chem. 40, 44.CrossRefGoogle Scholar
  30. 30.
    U. Kortz, S. Nellutla, A. C. Stowe, N. S. Dalal, J. van Tol, and B. S. Bassil (2004). Inorg. Chem. 43, 144.CrossRefGoogle Scholar
  31. 31.
    L. H. Bi, M. Reicke, U. Kortz, B. Keita, L. Nadjo, and R. J. Clark (2004). Inorg. Chem. 43, 3915.CrossRefGoogle Scholar
  32. 32.
    U. Kortz, M. G. Savelieff, B. S. Bassil, and M. H. Dickman (2001). Angew. Chem. Int. Ed. 40, 3384.CrossRefGoogle Scholar
  33. 33.
    C. Tourné and G. Tourné (1975). C. R. Acad. Sci. Ser. III C281, 933.Google Scholar
  34. 34.
    L. G. Detusheva, L. I. Kuznetsova, V. A. Likholobov, A. A. Vlasov, N. N. Boldyreva, S. G. Poryvaev, and V. V. Malakhov (1999). Russ. J. Coord. Chem. 25, 569.Google Scholar
  35. 35.
    P. Mialane, J. Marrot, A. Mallard, and G. Hervé (2002). Inorg. Chim. Acta 328, 81.CrossRefGoogle Scholar
  36. 36.
    L.-H. Bi, U. Kortz, B. Keita, L. Nadjo, and L. Daniels (2005). Eur. J. Inorg. Chem 2005, 3034.CrossRefGoogle Scholar
  37. 37.
    F. Hussain, B. S. Bassil, U. Kortz, O. A. Kholdeeva, M. N. Timofeeva, P. de Oliveira, B. Keita, and L. Nadjo (2007). Chem. Eur. J. 13, 4733.CrossRefGoogle Scholar
  38. 38.
    O. A. Kholdeeva, B. G. Donoeva, T. A. Trubitsina, G. Al-Kadamany, and U. Kortz (2009). Eur. J. Inorg. Chem 2009, (14), 5134.CrossRefGoogle Scholar
  39. 39.
    K. Wassermann, M. H. Dickman, and M. T. Pope (1997). Angew. Chem. Int. Ed. Engl. 36, 1445.CrossRefGoogle Scholar
  40. 40.
    A. Proust, R. Thouvenot, and P. Gouzerh (2008). Chem. Commun. 16, 1837.CrossRefGoogle Scholar
  41. 41.
    A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerh, and G. Izzet (2012). Chem. Soc. Rev. 41, 7605.CrossRefGoogle Scholar
  42. 42.
    A. Dolbecq, E. Dumas, C. R. Mayer, and P. Mialane (2010). Chem. Rev. 110, 6009.CrossRefGoogle Scholar
  43. 43.
    S. Reinoso, L. F. Piedra-Garza, M. H. Dickman, A. Praetorius, M. Biesemans, R. Willem, and U. Kortz (2010). Dalton Trans. 39, 248.CrossRefGoogle Scholar
  44. 44.
    F. Hussain, M. Reicke, and U. Kortz (2004). Eur. J. Inorg. Chem 2004, (13), 2733.CrossRefGoogle Scholar
  45. 45.
    F. Hussain, U. Kortz, and R. J. Clark (2004). Inorg. Chem. 43, 3237.CrossRefGoogle Scholar
  46. 46.
    U. Kortz, F. Hussain, and M. Reicke (2005). Angew. Chem. Int. Ed. 44, 3773.CrossRefGoogle Scholar
  47. 47.
    F. Hussain, U. Kortz, B. Keita, L. Nadjo, and M. T. Pope (2006). Inorg. Chem. 45, 761.CrossRefGoogle Scholar
  48. 48.
    S. Reinoso, M. H. Dickman, M. Reicke, and U. Kortz (2006). Inorg. Chem. 45, 10422.CrossRefGoogle Scholar
  49. 49.
    S. Reinoso, M. H. Dickman, M. Reicke, and U. Kortz (2006). Inorg. Chem. 45, 9014.CrossRefGoogle Scholar
  50. 50.
    F. Hussain, M. H. Dickman, U. Kortz, B. Keita, L. Nadjo, A. Khitrov, and A. G. Marshall (2007). J. Clust. Sci. 18, 173.CrossRefGoogle Scholar
  51. 51.
    S. Reinoso, M. H. Dickman, M. F. Matei, and U. Kortz (2007). Inorg. Chem 46, 4383.CrossRefGoogle Scholar
  52. 52.
    L. F. Piedra-Garza, M. H. Dickman, O. Moldovan, H. J. Breunig, and U. Kortz (2009). Inorg. Chem. 48, 411.CrossRefGoogle Scholar
  53. 53.
    L. F. Piedra-Garza, S. Reinoso, M. H. Dickman, M. M. Sanguineti, and U. Kortz (2009). Dalton Trans. 31, 6231.CrossRefGoogle Scholar
  54. 54.
    S. Reinoso, M. H. Dickman, and U. Kortz (2009). Eur. J. Inorg. Chem 2009, (7), 947.CrossRefGoogle Scholar
  55. 55.
    S. Reinoso, B. S. Bassil, M. Barsukova, and U. Kortz (2010). Eur. J. Inorg. Chem. 17, 2537.CrossRefGoogle Scholar
  56. 56.
    L. F. Piedra-Garza, M. Barsukova-Stuckart, B. S. Bassil, R. Al-Oweini, and U. Kortz (2012). J. Clust. Sci. 23, 939.CrossRefGoogle Scholar
  57. 57.
    M. Barsukova-Stuckart, L. F. Piedra-Garza, B. Gautam, G. A. Espinoza, N. Izarova, A. Banerjee, B. S. Bassil, M. S. Ullrich, H. J. Breunig, C. Silvestru, and U. Kortz (2012). Inorg. Chem. 51, 12015.CrossRefGoogle Scholar
  58. 58.
    P. Yang, B. S. Bassil, Z. Lin, A. Haider, G. Alfaro-Espinoza, M. S. Ullrich, C. Silvestru, and U. Kortz (2015). Chem. Eur. J. 21, 15600.CrossRefGoogle Scholar
  59. 59.
    P. Yang, Z. Lin, G. Alfaro-Espinoza, M. S. Ullrich, C. Rat, C. Silvestru, and U. Kortz (2016). Inorg. Chem. 55, 251.CrossRefGoogle Scholar
  60. 60.
    P. Yang, Z. Lin, B. S. Bassil, G. Alfaro-Espinoza, M. S. Ullrich, M.-X. Li, C. Silvestru, and U. Kortz (2016). Inorg. Chem. 55, 3718.CrossRefGoogle Scholar
  61. 61.
    B. Kandasamy, B. S. Bassil, A. Haider, B. Chen, N. S. Dalal, J. Beckmann, and U. Kortz (2015). J. Organomet. Chem. 796, 33.CrossRefGoogle Scholar
  62. 62.
    C. W. Nogueira, G. Zeni, and J. B. T. Rocha (2004). Chem. Rev. 104, 6255.CrossRefGoogle Scholar
  63. 63.
    L. A. Ba, M. Doring, V. Jamier, and C. Jacob (2010). Org. Biomol. Chem. 8, 4203.CrossRefGoogle Scholar
  64. 64.
    E. R. T. Tiekink (2012). Dalton Trans. 41, 6390.CrossRefGoogle Scholar
  65. 65.
    C. P. Srivastava, S. Bajpai, C. Ram Kumar, and R. J. Butcher (2007). J. Organomet. Chem 692, 2482.CrossRefGoogle Scholar
  66. 66.
    A. L. Al-Rubaie, H. A. Y. Alshirayda, P. Granger, and S. Chapelle (1985). J. Organomet. Chem. 287, 321.CrossRefGoogle Scholar
  67. 67.
    D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J. O. Durand, B. Bujoli, Z. Gan, and G. Hoatson (2002). Magn. Reson. Chem. 40, 70.CrossRefGoogle Scholar
  68. 68.
    A. X. S. Bruker, SAINT (Bruker AXS Inc, Madison, 2007).Google Scholar
  69. 69.
    G. M. Sheldrick, SADABS (University of Göttingen, Göttingen, 1996).Google Scholar
  70. 70.
    G. M. Sheldrick (2008). Acta Crystallogr. Sect. A 64, 112.CrossRefGoogle Scholar
  71. 71.
    M. Leyrie, A. Tézé, and G. Hervé (1985). Inorg. Chem. 24, 1275.CrossRefGoogle Scholar
  72. 72.
    K. C. Kim, A. Gaunt, and M. T. Pope (2002). J. Clust. Sci. 13, 423.CrossRefGoogle Scholar
  73. 73.
    C. Ritchie and C. Boskovic (2010). Cryst. Growth Des. 10, 488.CrossRefGoogle Scholar
  74. 74.
    S. Meiboom and D. Gill (1958). Rev. Sci. Instrum. 29, 688.CrossRefGoogle Scholar
  75. 75.
    J. Mason (1993). Solid-State Nucl. Magn. Reson. 2, 285.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Balamurugan Kandasamy
    • 1
  • Bassem S. Bassil
    • 1
    • 2
  • Jens Beckmann
    • 3
  • Banghao Chen
    • 4
  • Naresh S. Dalal
    • 4
  • Ulrich Kortz
    • 1
  1. 1.Department of Life Sciences and ChemistryJacobs UniversityBremenGermany
  2. 2.Department of Chemistry, Faculty of SciencesUniversity of BalamandTripoliLebanon
  3. 3.Institut für Anorganische ChemieUniversität BremenBremenGermany
  4. 4.Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeUSA

Personalised recommendations