Skip to main content
Log in

Concentration Dependent Catalytic Activity of Glutathione Coated Silver Nanoparticles for the Reduction of 4-Nitrophenol and Organic Dyes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present study, we have synthesized glutathione modified silver nanoparticles (GSH-AgNPs) in aqueous medium and are characterized by absorption, high resolution transmission electron microscope (HR-TEM), selective area electron diffraction (SAED) pattern, dynamic light scattering (DLS), Zeta potential and Fourier transform infrared (FT-IR) spectroscopic measurements. Catalytic activity of GSH-AgNPs has been evaluated for the reduction reactions of 4-nitrophenol (4-NP), methylene blue (MB dye) and eosin Y (EY dye) in presence of sodium borohydride including the effect of catalyst concentration on the catalytic activity. Furthermore, the rate constants of reduction reactions are determined, which are linearly enhanced upon increasing the concentrations of GSH-AgNPs. It is explored that reduction reactions such as 4-NP, organic dyes by NaBH4 in the presence of catalyst follow a pseudo first order kinetics. The catalytic reduction of 4-NP and organic dyes proceed with a faster rate even in the presence of nanomolar concentration of catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. A. Wertime (1964). Science 146, 1257.

    Article  CAS  Google Scholar 

  2. T. A. Wertime (1973). Science 182, 875.

    Article  CAS  Google Scholar 

  3. L. M. Liz-Marzan (2006). Langmuir 22, 32.

    Article  CAS  Google Scholar 

  4. D. D. Evanoff and G. Chumanov (2005). Chem. Phys. Chem. 6, 1221.

    Article  CAS  Google Scholar 

  5. N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, and L. M. Liz-Marzan (2004). J. Phys. Chem. B. 108, 8751.

    Article  CAS  Google Scholar 

  6. J. C. Riboh, A. J. Haes, A. D. McFarland, C. R. Yonzon, and R. P. VanDuyne (2003). J. Phys. Chem. B. 107, 1772.

    Article  CAS  Google Scholar 

  7. Y. Shiraishi and N. Toshima (1999). J. Mol. Catal. A. 141, 187.

    Article  CAS  Google Scholar 

  8. A. Dobosz and A. Sobczynski (2003). Water Res. 37, 1489.

    Article  CAS  Google Scholar 

  9. L. Bhavani Devi and A. B. Manda (2013). RSC Adv. 3, 5238.

    Article  Google Scholar 

  10. R. Fenger, E. Fertitta, H. Kirmse, A. F. Theunemann, and K. Rademann (2012). Phys. Chem. Chem. Phys. 14, 9343.

    Article  CAS  Google Scholar 

  11. P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, and Y. Liu (2011). Nanoscale 3, 3357.

    Article  CAS  Google Scholar 

  12. Z. Wang, S. Zhai, B. Zhai, Z. Xiao, F. Zhang, and Q. An (2014). New J. Chem. 38, 3999.

    Article  CAS  Google Scholar 

  13. K. Esumi, R. Isono, and T. Yoshimura (2004). Langmuir 20, 237.

    Article  CAS  Google Scholar 

  14. Y. Liu, H. Tsunoyama, H. Akita, S. Xie, and T. Tsukuda (2011). ACS Catal. 2, 1.

    Article  Google Scholar 

  15. J. Cerda, G. Nuñez, H. Gómez, and L. Lópeza (2014). Mater. Sci. Eng C. 43, 21.

    Article  Google Scholar 

  16. P. K. Khanna and V. V. V. S. Subbarao (2003). Mater. Lett 57, 2242.

    Article  CAS  Google Scholar 

  17. Q. Xia, X. Chen, K. Zhao, and J. Liu (2008). Mater. Chem. Phys. 111, 8.

    Google Scholar 

  18. H. C. Yang, W. H. Wang, K. S. Huang, and M. H. Hon (2010). Carbohydr. Polym. 79, 176.

    Article  CAS  Google Scholar 

  19. Z. Zaheer, M. A. Malik, F. M. Al-Nowaiser, and Z. Khan (2010). Coll. Surf. B. 81, (2), 587.

    Article  CAS  Google Scholar 

  20. A. Rafey, K. B. L. Shrivastavaa, S. A. Iqbal, and Z. Khan (2011). J. Coll. Interface Sci. 354, 190.

    Article  CAS  Google Scholar 

  21. Z. Khan, S. A. AL-Thabaiti, A. Y. Obaid, Z. A. Khan, A. O. Abdulrahman, and J. A. Youbi (2012). Colloid. Interface Sci. 367, 101.

    Article  CAS  Google Scholar 

  22. I. S. Lim, D. Mott, W. Ip, P. N. Njoki, Y. Pan, S. Q. Zhou, and C. J. Zhong (2008). Langmuir 24, 8857.

    Article  CAS  Google Scholar 

  23. H. Li, Z. Cui, and C. Han (2009). Sens. Actuators B. 143, 87.

    Article  Google Scholar 

  24. B. Marco and B. Thomas (2005). Langmuir 21, 1354.

    Article  Google Scholar 

  25. B. Marco and B. Thomas (2005). J. Phys. Chem. B. 109, 10243.

    Article  Google Scholar 

  26. B. Marco and B. Thomas (2005). J. Phys. Chem. B. 109, 22476.

    Article  Google Scholar 

  27. X. S. Kou, S. Z. Zhang, Z. Yang, C. K. Tsung, G. D. Studky, L. D. Sun, J. F. Wang, and C. H. Yan (2007). J. Am. Chem. Soc. 129, 6402.

    Article  CAS  Google Scholar 

  28. J. M. Slocik and D. W. Wright (2003). Biomacromolecules 4, 1135.

    Article  CAS  Google Scholar 

  29. C. B. Chory, C. Remenyi, H. Strohm, and G. Muller (2004). J. Phys. Chem. B. 108, 7637.

    Article  Google Scholar 

  30. Y. G. Zheng, Z. C. Yang, and J. Y. Ying (2007). Adv. Mater. 19, 1475.

    Article  CAS  Google Scholar 

  31. Y. T. Woo and D. Y. Lai Aromatic Amino And Nitro-Amino Compounds And Their Halogenated Derivatives Patty Toxicology (Wiley, New York, 2001).

    Google Scholar 

  32. S. C. Mitchell and R. H. Waring Ullmann’s Encyclopedia Of Industrial Chemistry (Wiley-VCH, Weinheim, 2002).

    Google Scholar 

  33. S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S. K. Ghosh, and T. Pal (2007). J. Phys. Chem. C 111, 4596.

    Article  CAS  Google Scholar 

  34. P. Zhao, X. Feng, D. Huang, G. Yang, and D. Astru (2015). Coord. Chem. Rev. 287, 114.

    Article  CAS  Google Scholar 

  35. B. Bagchi, P. Thakur, A. Kool, S. Das, and P. Nandy (2014). RSC Adv. 4, 61114.

    Article  CAS  Google Scholar 

  36. I. A. Alaton and I. A. Balcioglu (2001). J. Photochem. Photobiol. 141, 247.

    Article  CAS  Google Scholar 

  37. F. Faisal, M. A. Tariq, and M. Muneer (2007). Dyes Pigm. 72, 233.

    Article  CAS  Google Scholar 

  38. K. T. Chung and C. E. Cerniglia (1992). Mutat. Res. 277, 201.

    Article  CAS  Google Scholar 

  39. S. Srivaji, R. Sinha, and D. Roy (2004). Aquat. Toxicol. 66, 319.

    Article  Google Scholar 

  40. N. Vasimalai and S. A. John (2013). Talanta 115, 24.

    Article  CAS  Google Scholar 

  41. J. S. Lee, M. S. Han, and C. A. Mirkin (2007). Angew. Chem. Int. Ed. 46, 4093.

    Article  CAS  Google Scholar 

  42. A. S. Sharma and M. Ilanchelian (2014). Photochem. Photobiol. Sci. 13, 1741.

    Article  Google Scholar 

  43. P. K. Sudeep, S. T. S. Joseph, and K. G. Thomas (2005). J. Am. Chem. Soc. 127, 6516.

    Article  CAS  Google Scholar 

  44. A. Chompoosor, G. Han, and V. M. Rotello (2008). Bioconjugate Chem. 19, 1342.

    Article  CAS  Google Scholar 

  45. Y. Luo, H. Miao, and X. Yank (2015). Talanta 144, 488.

    Article  CAS  Google Scholar 

  46. R. T. Tom, V. Suryanarayanan, P. G. Reddy, S. Baskaran, and T. Pradeep (2004). Langmuir 20, 1909.

    Article  CAS  Google Scholar 

  47. N. Nishida, E. S. Shibu, H. Yao, T. Oonishi, K. Kimura, and T. Pradeep (2008). Adv. Mater. 20, 4719.

    Article  CAS  Google Scholar 

  48. N. Vasimalai and S. A. John (2013). J. Mater. Chem. A. 1, 4475.

    Article  CAS  Google Scholar 

  49. J. Liu, G. Qin, P. Raveendran, and Y. Ikushima (2006). Chem. Eur. J. 12, 2131.

    Article  CAS  Google Scholar 

  50. L. Ai, H. Yue, and J. Jiang (2012). J. Mater. Chem. 22, 23447.

    Article  CAS  Google Scholar 

  51. A. Murugadoss and A. Chattopadhyay (2008). Nanotechnology 19, 1.

    Article  Google Scholar 

  52. B. Baruah, G. J. Gabriel, M. J. Akbashev, and M. E. Booher (2013). Langmuir 29, 4225.

    Article  CAS  Google Scholar 

  53. R. Kaur, C. Giordano, M. Gradzielski, and S. Mehta (2014). Chem. Asian J. 9, 189.

    Article  CAS  Google Scholar 

  54. M. Zhu, C. Wang, D. Meng, and G. Diao (2013). J. Mater. Chem. A. 1, 2118.

    Article  CAS  Google Scholar 

  55. S. Joseph and B. Mathew (2015). J. Mol. Liq. 204, 184.

    Article  CAS  Google Scholar 

  56. Z. J. Jiang, C. Y. Liu, and L. W. Sun (2005). J. Phys. Chem. B. 109, 1730.

    Article  CAS  Google Scholar 

  57. V. S. Suvith and D. Philip (2014). Spectrochimica Acta Part A. 118, 526.

    Article  CAS  Google Scholar 

  58. V. K. Vidhu and D. Philip (2014). Micron 56, 54.

    Article  CAS  Google Scholar 

  59. J. Santhanalakshmi and P. Venkatesan (2011). J. Nanopart. Res. 13, 479.

    Article  CAS  Google Scholar 

  60. T. Pal, S. De, N. R. Jana, N. Pradhan, R. Mandal, A. Pal, A. E. Beezer, and J. C. Mitchel (1998). Langmuir 14, 4724.

    Article  CAS  Google Scholar 

  61. S. Ghosh, T. Kundu, S. Mandal, and M. Pal (2002). Langmuir 18, 8756.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors R. R and M. I gratefully acknowledge the University Grants Commission (UGC-MRP, Project No. 41-309/2012 (SR)) and Department of Science and Technology (DST-SERB, Project No. SR/FT/CS-015/2009), New Delhi, India for the financial support. K. S acknowledges the DST-Inspire fellowship (SRF), Goverment of India for Financial support (IF110497).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malaichamy Ilanchelian.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajamanikandan, R., Shanmugaraj, K. & Ilanchelian, M. Concentration Dependent Catalytic Activity of Glutathione Coated Silver Nanoparticles for the Reduction of 4-Nitrophenol and Organic Dyes. J Clust Sci 28, 1009–1023 (2017). https://doi.org/10.1007/s10876-016-1095-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1095-7

Keywords

Navigation