Skip to main content
Log in

Theoretical Study on the Structures and Thermal Properties of Ag–Pt–Ni Trimetallic Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The structures and thermal properties of Ag–Pt–Ni ternary nanoclusters varying with different compositions and sizes are studied by Monte Carlo and molecular dynamics simulations. It can be found that silver atoms tend to occupy the surface and platinum atoms favor the subsurface occupation, whereas the inner is occupied by nickel atoms due to the different surface energies and lattice parameters. In addition, there is a non-monotonous relationship between the melting points and compositions of Ag–Pt–Ni ternary nanoclusters according to molecular dynamics simulations. In addition, a linear decrease in melting point with \(N^{ - 1/3}\) is found for both monometallic and trimetallic clusters. This behavior is consistent with Pawlow’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. S. Fenton, V. Ramani, and J. M. Fenton (2006). Electrochem. Soc. Interface 15, 37.

    CAS  Google Scholar 

  2. J. Carton, V. Lawlor, A. Olabi, C. Hochenauer, and G. Zauner (2012). Energy 39, 63.

    Article  CAS  Google Scholar 

  3. D. C. Higgins and Z. Chen (2013). Can. J. Chem. Eng. 91, 1881.

    Article  CAS  Google Scholar 

  4. F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston, and P. Zelenay (2011). Energy Environ. Sci. 4, 114.

    Article  CAS  Google Scholar 

  5. A. A. Gewirth and M. S. Thorum (2010). Inorg. Chem. 49, 3557.

    Article  CAS  Google Scholar 

  6. Z. Peng, J. Wu, and H. Yang (2009). Chem. Mater. 22, 1098.

    Article  Google Scholar 

  7. M. K. Carpenter, T. E. Moylan, R. S. Kukreja, M. H. Atwan, and M. M. Tessema (2012). J. Am. Chem. Soc. 134, 8535.

    Article  CAS  Google Scholar 

  8. X. Song and D. Zhang (2014). Energy 70, 223.

    Article  CAS  Google Scholar 

  9. Z. Lei, Z. Ding, S. Ming, C. Yungui, and W. Xiaofei (2014). Rare Metal Mat. Eng. 43, 2507.

    Article  Google Scholar 

  10. B. Fang, J. Luo, P. N. Njoki, R. Loukrakpam, B. Wanjala, J. Hong, J. Yin, X. Hu, J. Last, and C. J. Zhong (2010). Electrochim. Acta 55, 8230.

    Article  CAS  Google Scholar 

  11. J. N. Tiwari, R. N. Tiwari, G. Singh, and K. S. Kim (2013). Nano Energy 2, 553.

    Article  CAS  Google Scholar 

  12. B. N. Wanjala, B. Fang, J. Luo, Y. Chen, J. Yin, M. H. Engelhard, R. Loukrakpam, and C. J. Zhong (2011). J. Am. Chem. Soc. 133, 12714.

    Article  CAS  Google Scholar 

  13. P. Mani, R. Srivastava, and P. Strasser (2011). J. Power Sources 196, 666.

    Article  CAS  Google Scholar 

  14. D. Wu and D. Cheng (2015). Electrochimica Acta 180, 316.

    Article  CAS  Google Scholar 

  15. D. Cheng, X. Liu, D. Cao, W. Wang, and S. Huang (2007). Nanotechnology 18, 475702.

    Article  Google Scholar 

  16. R. Subbaraman and S. K. Sankaranarayanan (2011). Surf. Sci. 605, 1595.

    Article  CAS  Google Scholar 

  17. S. Khanal, N. Bhattarai, J. J. Velazquez-Salazar, D. Bahena, G. Soldano, A. Ponce, M. M. Mariscal, S. Mejia-Rosales, and M. Jose-Yacaman (2013). Nanoscale 5, 12456.

    Article  CAS  Google Scholar 

  18. Z. Zhao, M. Li, D. Cheng, and J. Zhu (2014). Chem. Phys. 441, 152.

    Article  CAS  Google Scholar 

  19. F. Cleri and V. Rosato (1993). Phys. Rev. B 48, 22.

    Article  CAS  Google Scholar 

  20. D. Cheng and D. Cao (2008). Eur. Phys. J. B 66, 17.

    Article  CAS  Google Scholar 

  21. L. O. Paz-Borbón, R. L. Johnston, G. Barcaro, and A. Fortunelli (2008). J. Chem. Phys. 128, 134517.

    Article  Google Scholar 

  22. Z. Kuntová, G. Rossi, and R. Ferrando (2008). Phys. Rev. B 77, 205431.

    Article  Google Scholar 

  23. F. Baletto and R. Ferrando (2005). Rev. Mod. Phys. 77, 371.

    Article  CAS  Google Scholar 

  24. G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, and R. Ferrando (2004). Phys. Rev. Lett. 93, 105503.

    Article  CAS  Google Scholar 

  25. R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 108, 845.

    Article  CAS  Google Scholar 

  26. L. Wang and D. D. Johnson (2009). J. Am. Chem. Soc. 131, 14023.

    Article  CAS  Google Scholar 

  27. G. G. Guisbiers, R. N. Mendoza-Cruz, L. Bazán-Díaz, J. J. Velázquez-Salazar, R. Mendoza-Perez, J. A. Robledo-Torres, J. L. Rodriguez-Lopez, J. M. Montejano-Carrizales, R. L. Whetten, and M. José-Yacamán (2015). ACS nano 10, 188.

    Article  Google Scholar 

  28. F. Aqra and A. Ayyad (2011). Appl. Surf. Sci. 257, 6372.

    Article  CAS  Google Scholar 

  29. C. Kittel and D. F. Holcomb (1967). Am. J. Phys. 35, 547.

    Article  Google Scholar 

  30. S. K. Sankaranarayanan, V. R. Bhethanabotla, and B. Joseph (2005). Phys. Rev. B 71, 195415.

    Article  Google Scholar 

  31. P. Puri and V. Yang (2007). J. Phys. Chem. C 111, 11776.

    Article  CAS  Google Scholar 

  32. K. Fukui, B. G. Sumpter, M. D. Barnes, and D. W. Noid (1999). Polym. J. 31, 664.

    Article  CAS  Google Scholar 

  33. Y. Qi, T. Çağın, Y. Kimura, and W. A. Goddard III (1999). Phys. Rev. B 59, 3527.

    Article  CAS  Google Scholar 

  34. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti (1983). Phys. Rev. B 28, 784.

    Article  CAS  Google Scholar 

  35. Y. Wang, S. Teitel, and C. Dellago (2004). Chem. Phys. Lett. 394, 257.

    Article  CAS  Google Scholar 

  36. P. Pawlow (1909). Z. phys. Chem 65, 545.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (21576008, 91334203), BUCT Fund for Disciplines Construction and Development (Project No. XK1501), Fundamental Research Funds for the Central Universities (Project No. buctrc201530 and PT1613-01), and “Chemical Grid Project” of BUCT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiqin Zhu or Daojian Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Zhao, Z., Fisher, A. et al. Theoretical Study on the Structures and Thermal Properties of Ag–Pt–Ni Trimetallic Clusters. J Clust Sci 27, 1849–1861 (2016). https://doi.org/10.1007/s10876-016-1068-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1068-x

Keywords

Navigation