Skip to main content
Log in

Two New Cubane-Type Tetranuclear Compounds of Copper(II), Nickel(II) Derived from Reduced Schiff Base Ligand: Syntheses, Structures and Magnetic Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two tetranuclear complexes, [M(H3L)]4·X (1, M = Cu, X = 4,4′-dpdo; 2, M = Ni, X = DMF, H5L = 2-[(3,5-dibromo-2-hydroxybenzyl) amino]-2-(hydroxymethyl)propane-1,3-diol, 4,4′-dpdo is 4,4′-bipyridine-N,N′-dioxide, DMF = N,N′-dimethyl formamide), have been synthesized and characterized by elemental analysis, IR and X-ray single-crystal diffraction. Compound 1 features a centrosymmetric tetranuclear copper cluster which further constructed a 1D chain through a tetra-acceptor hydrogen bonds of 4,4′-dpdo molecule. Compound 2 having a P21 /n space group also exhibits a tetranuclear nickel cluster with a cubane topology in which the central Ni(II) ion and oxygen atoms from H3L2− occupy the alternate vertices of the cube. Magnetic properties of 1 and 2 in the 2–300 K have also been discussed. The tetranuclear cubanes cores display dominant ferromagnetic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Xiao, Y. Q. Liu, G. Li, and P. Huang (2015). Supramol. Chem. 27, 161.

    Article  CAS  Google Scholar 

  2. S.-H. Zhang, R.-X. Zhao, G. Li, H.-Y. Zhang, C.-L. Zhang, and G. Muller (2014). RSC Adv. 4, 54837.

    Article  CAS  Google Scholar 

  3. P. A. Vigato, V. Peruzzo, and S. Tamburini (2012). Coord. Chem. Rev. 256, 953.

    Article  CAS  Google Scholar 

  4. J. B. Pelayo-Vázquez, F. J. González, M. A. Leyva, M. Campos, L. A. Torres, and M. J. Rosales-Hoz (2012). J. Organomet. Chem. 716, 289.

    Article  Google Scholar 

  5. L. J. Li, X. X. Hua, Y. Y. Huang, X. Y. Yang, C. Wang, and J. L. Du (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 291.

    Article  CAS  Google Scholar 

  6. R. A. Kumar, M. Arivanandhan, and Y. Hayakawa (2013). Prog. Cryst. Growth Charact. Mater. 59, 113.

    Article  Google Scholar 

  7. Y. Zhao, K. Chen, J. Fan, T. Okamura, Y. Lu, L. Luo, and W. Y. Sun (2014). Dalton Trans. 43, 2252.

    Article  CAS  Google Scholar 

  8. H. Fu, Y. Lu, Z. L. Wang, C. Liang, Z. M. Zhang, and E. Wang (2012). Dalton Trans. 41, 4084.

    Article  CAS  Google Scholar 

  9. Y. Xiao, P. Huang, and W. Wang (2015). J. Clust. Sci. 26, 1091.

    Article  CAS  Google Scholar 

  10. S. Hu, F. Y. Yu, P. Zhang, and D. R. Lin (2013). Dalton Trans. 42, 7731.

    Article  CAS  Google Scholar 

  11. G. Bozoklu, C. Gateau, D. Imbert, J. Pécaut, K. Robeyns, Y. Filinchuk, F. Memon, G. Muller, and M. Mazzanti (2012). J. Am. Chem. Soc. 134, 8372.

    Article  CAS  Google Scholar 

  12. P. Alborés and E. Rentschler (2009). Angew. Chem. Int. Ed. 48, 9366.

    Article  Google Scholar 

  13. Y. Xiao, P. Huang, and Y. Q. Liu (2015). Mol. Cryst. Liq. Cryst. 607, 242.

    Article  Google Scholar 

  14. L.-F. Ma, L.-Y. Wang, X.-K. Huo, Y.-Y. Wang, Y.-T. Fan, J.-G. Wang, and S.-H. Chen (2008). Cryst. Grow. Des. 8, 620.

    Article  CAS  Google Scholar 

  15. T.-P. Hu, Z.-J. Xue, B.-H. Zheng, X.-Q. Wang, X.-N. Hao, and Y. Song (2016). CrystEngComm. 18, 5386.

    Article  CAS  Google Scholar 

  16. J. Zhang, C. Zhang, Y. Xiao, Y. Qin, and S. Zhang (2016). Supramol. Chem. 28, 231.

    Article  Google Scholar 

  17. J. P. Costes and L. Vendier (2010). Eur. J. Inorg. Chem. 2010, 2768.

    Article  Google Scholar 

  18. P. L. Caradoc-Davies and L. R. Hanton (2001). Chem. Commun. 12, 1098.

    Article  Google Scholar 

  19. S.-H. Zhang, M.-F. Tang, and C.-M. Ge (2009). Z. Anorg. Allg. Chem. 635, 1442.

    Article  CAS  Google Scholar 

  20. G. M. Sheldrick (2008). Acta Cryst. A64, 112.

    Article  Google Scholar 

  21. J. C. Pessoa, I. Cavaco, I. Correia, I. Tomaz, T. Duarte, and P. M. Matias (2000). J. Inorg. Biochem. 80, 35.

    Article  CAS  Google Scholar 

  22. R. J. Butcher, Y. Gultneh, and K. Ayikoe (2009). Acta Cryst. E65, m1193.

    Google Scholar 

  23. H. J. Sun, L. She, S. M. Fang, and X. Y. Li (2008). Polyhedron 27, 854.

    Article  CAS  Google Scholar 

  24. C. D. Papadopoulos, A. G. Hatzidimitriou, G. P. Voutsas, and A. Lalia-Kantouri (2007). Polyhedron 26, 1077.

    Article  CAS  Google Scholar 

  25. S. Thakurta, P. Roy, R. J. Butcher, M. Salah El Fallah, J. Tercero, E. Garribba, and S. Mitra (2009). Eur. J. Inorg. Chem. 2009, 4385.

    Article  Google Scholar 

  26. A. Banerjee, R. Singh, P. Mondal, E. Colacio, and K. K. Rajak (2010). Eur. J. Inorg. Chem. 2010, 790.

    Article  Google Scholar 

  27. J. K. Eberhardt, T. Glaser, R.-D. Hoffmann, R. Fröhlich, and E.-U. Würthwein (2005). Eur. J. Inorg. Chem. 2005, 1175.

    Article  Google Scholar 

  28. A. Sieber, C. Boskovic, R. Bircher, O. Waldmann, S. T. Ochsenbein, G. Chaboussant, H. U. Güdel, N. Kirchner, J. V. Slageren, W. Wernsdorfer, A. Neels, H. Stoeckli-Evans, S. Janssen, F. Juranyi, and H. Mutka (2005). Inorg. Chem. 44, 4315.

    Article  CAS  Google Scholar 

  29. Y. Xiao, S.-H. Zhang, G.-Z. Li, Y.-G. Wang, and C. Feng (2011). Inorg. Chim. Acta 366, 39.

    Article  CAS  Google Scholar 

  30. M. A. Halcrow, J. C. Huffman, and G. Christou (1995). Angew. Chem. Int. Ed. 34, 889.

    Article  CAS  Google Scholar 

  31. S. Hazra, S. Mohanta, R. Koner, P. Lemoine, and E. C. Sañudo (2009). Eur. J. Inorg. Chem. 2009, 3458.

    Article  Google Scholar 

  32. R. E. P. Winpenny (2002). J. Chem. Soc. Dalton Trans. 1, 1.

    Article  Google Scholar 

  33. S. M. Aubin, N. R. Dilley, and L. Pardi (1998). J. Am. Chem. Soc. 120, 4991.

    Article  CAS  Google Scholar 

  34. J. M. García-Lastra, M. T. Barriuso, and J. A. Aramburu (2005). J. Chem. Phys. 317, 103.

    Google Scholar 

  35. O. Kahn, J. Larionova, and J. V. Yakhmi (1999). Chem. Eur. J. 5, 3443.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (No. 21161006), the Nature Science Foundation of Guangxi Province of China (No. 2015GXNSFAA139031); Program for the scientific research and technology development plan of Guilin (No. 20150133-5); Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology; the Innovation Project of Guangxi Graduate Education (SS201606).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhua Zhang or Hong Hai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Feng, C., Ge, C.M. et al. Two New Cubane-Type Tetranuclear Compounds of Copper(II), Nickel(II) Derived from Reduced Schiff Base Ligand: Syntheses, Structures and Magnetic Properties. J Clust Sci 27, 2001–2011 (2016). https://doi.org/10.1007/s10876-016-1064-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1064-1

Keywords

Navigation