Skip to main content
Log in

Microstructural and Thermal properties of Plasma Sprayed YSZ Nano-Clusters Thermal Barrier Coatings

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present study, a novel durable three layered thermal barrier coating (TBCs) were prepared using atmospheric plasma spray (APS) on Ni718 superalloy substrate consisting of the YSZ nano-clusters. In order to develop a functionally graded coating system, the non-transformable (t′) tetragonal YSZ nano-clusters (40 nm) were synthesized by a sol–gel process and characterized at the temperature 1200 °C for 100 h. NiCrAlY was used as bond coat. The developed coating system introduces a protective top layer of MoSi2 (top coat) for preventing diffusion of oxygen, oxidation of the bond coating, provides thermal insulation and protection against corrosion and high temperature erosion. Microstructural, thermal oxidation resistance, thermal shock and adhesion strength of TBCs were analyzed. Different properties of as-sprayed TBCs have no significant effect on thermal oxidation property. The TBCs have shown better thermal shock resistance but lower adhesion strength than the TBCs made of without MoSi2 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Reymann, MCrAlY Deposition by HVOF: A Suitable Alternative to LPPS. Turbine Forum: Advanced Coatings for High Temperatures (Nice Port St. Laurent, 2002), pp. 17–19.

  2. K. Vaidyanathan, E. H. Jordan, and M. Gell (2004). Acta Mater. 52, 1107.

    Article  CAS  Google Scholar 

  3. J. A. Thompson and T. W. Clyne (2001). Acta Mater. 49, 1565.

    Article  CAS  Google Scholar 

  4. K. W. Schlichting, N. P. Padture, E. H. Jordan, and M. Gell (2003). Mater. Sci. Eng. A 342, 120.

    Article  Google Scholar 

  5. M. P. Boyce Gas Turbine Engineering Handbook, 2nd ed (Gulf Professional Publishing, Houston, 2002).

    Google Scholar 

  6. R. L. Jones, R. F. Reidy, and D. Mess (1996). Surf. Coat. Technol. 82, 70.

    Article  CAS  Google Scholar 

  7. N. P. Padture and H. E. Jordan (2002). Science 296, 280.

    Article  CAS  Google Scholar 

  8. R. W. Trice, Y. J. Su, J. R. Mawdsley, and K. T. Faber (2002). J. Mater. Sci. 37, 2359.

    Article  CAS  Google Scholar 

  9. R. Sivakumar and B. L. Mordike (1989). Surf. Coat. Technol. 37, 139.

    Article  CAS  Google Scholar 

  10. C. S. Richard, G. Beranger, J. Lu, and J. F. Flavenot (1996). Surf. Coat. Technol. 82, 99.

    Article  CAS  Google Scholar 

  11. A. Kulkarni, H. Herman, F. Decarlo, and R. Subramanian (2004). Metall. Mater. Trans. A. 35, 1945.

    Article  Google Scholar 

  12. H. X. Deng, H. J. Shi, H. C. Yu, and B. Zhong (2011). Surf. Coat. Technol. 205, 3621.

    Article  CAS  Google Scholar 

  13. A. González, E. López, A. Tamayo, E. Restrepo, and F. Hernández (2010). DYNA 77, 151.

    Google Scholar 

  14. M. Hetmanczyk, L. Swadzba, and B. Mendala (2007). J. Achiev. Mater. Manuf. Eng. 24, 1.

    Google Scholar 

  15. R. C. Reed The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  16. M. R. Winter and D. R. Clarke (2006). Acta Mater. 54, 5051.

    Article  CAS  Google Scholar 

  17. J. Ilavsky, J. K. Stalick, and J. Wallace (2001). J. Therm. Spray Technol. 10, 497.

    Article  CAS  Google Scholar 

  18. J. A. Krogstad, M. Lepple, Y. Gao, D. M. Lipkin, and C. G. Levi (2011). J. Am. Ceram. Soc. 94, 4548.

    Article  CAS  Google Scholar 

  19. J. T. Demasi-Marcin and D. K. Gupta (1994). Surf. Coat. Technol. 68, 1.

    Article  Google Scholar 

  20. T. Sourmail, Coatings for high temperature applications, University of Cambridge, 2004. Available: http://Thomas-sourmail.net/coatings/index.html. [date 30 October 2012].

  21. L. Seadzba, et al. (1993). Surf. Coat. Technol. 62, 486.

    Article  Google Scholar 

  22. W. Beele, G. Marijnissen, and A. V. Lieshout (1999). Surf. Coat. Technol. 120–121, 61.

    Article  Google Scholar 

  23. H. Xu and H. Guo Thermal Barrier Coatings (Woodhead Publishing Limited, Sawston, 2011).

    Book  Google Scholar 

  24. T. Kato, K. Ogawa, and T. Shoji (2002). J. Jpn. Therm. Spray. Soc. 39, 1.

    Google Scholar 

  25. D. Seo, K. Ogawa, M. Tanno, T. Shoji, and S. Murata (2007). Surf. Coat. Technol. 201, 7952.

    Article  CAS  Google Scholar 

  26. A. Manap, A. Nakano, and K. Ogawa (2012). J. Therm. Spray Technol. 21, 586.

    Article  CAS  Google Scholar 

  27. K. Ogawa, K. Ito, T. Shoji, D. W. Seo, H. Tezuka, and H. Kato (2006). J. Therm. Spray Technol. 15, 640.

    Article  CAS  Google Scholar 

  28. J. Y. Byun, J. K. Yoon, G. H. Kim, J. S. Kim, and C. S. Choi (2002). Scr. Mater. 46, 537.

    Article  CAS  Google Scholar 

  29. K. Sonoya and S. Tobe (2009). J. Solid Mech. Mater. Eng. 3, 1127.

    Article  Google Scholar 

  30. S. Tailor, M. Singh, and A. V. Doub (2016). J. Clust. Sci. In press.

  31. M. Pechini (1967). Patent No. 3,330,697. United States Patent Office.

  32. K. Singh, L. Pathak, and S. Roy (2007). Ceram. Int. 33, 1463.

    Article  CAS  Google Scholar 

  33. S. Sakka Handbook of Sol–Gel Science and Technology. 1. Sol–Gel Processing, vol. 1 (Springer, New York, 2005).

    Google Scholar 

  34. Y.-W. Zhang, Z.-G. Yan, F.-H. Liao, C.-S. Liao, and C.-H. Yan (2004). Mater. Res. Bull. 39, 1763.

    Article  CAS  Google Scholar 

  35. A. Naumenko, N. Berezovska, M. Biliy, and O. Shevchenko (2008). Phys. Chem. Solid State 9, 121.

    CAS  Google Scholar 

  36. J. Ilavsky, A. J. Allen, G. G. Long, et al. (1997). J. Am. Ceram. Soc. 80, 733.

    Article  CAS  Google Scholar 

  37. G. Bolelli, K. Sabriruddin, L. Lusvarghi, et al. (2010). Surf. Coat. Technol. 205, 363.

    Article  CAS  Google Scholar 

  38. T. Nakamura, G. Qian, and C. C. Berndt (2000). J. Am. Ceram. Soc. 83, 578.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (Grant № К4-2014-081) and experimental support of National University of Science and Technology “MISiS”, Moscow, Russia and Council of Scientific and Industrial Research, CSIR-HQS, Rafi Marg, New Delhi-110001, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Tailor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tailor, S., Singh, M., Mohanty, R.M. et al. Microstructural and Thermal properties of Plasma Sprayed YSZ Nano-Clusters Thermal Barrier Coatings. J Clust Sci 27, 1501–1518 (2016). https://doi.org/10.1007/s10876-016-1025-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1025-8

Keywords

Navigation