Skip to main content
Log in

One Pot Synthesis of Octahydroquinazolinone Derivatives Using (Me (Im)12) H4CuPW11O39 as a Surfactant Type Catalyst

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study is aimed at proposing a practical green procedure for the synthesis of octahydroquinazolinone derivatives using benzaldehyde, dimedone and urea under microwave irradiation in water. A surfactant type polyoxometalate-based organic–inorganic hybrid was able to efficiently catalyze this synthesis. The catalyst was prepared and characterized by Fourier transform infrared, UV–Vis, X-ray diffraction, and thermogravimetric analysis. The employed catalyst exerted a synergistic effect; the anion part acted as a catalyst while the cation part acted as a surfactant in order to increase the concentration of organic reactants in water. The main advantage of this method is its remarkable yield in short reaction periods, which results in the rendering of products with high purity. Moreover, this heterocatalyst is capable of being easily recovered and reused several times. The influences of reaction conditions were studied systematically, and a possible catalysis mechanism was proposed for understanding the highly efficient heterogeneous catalytic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Kidwai, S. Sexena, M. K. R. Khan, and S. S. Thural (2005). Eur. J. Med. Chem. doi:10.1016/j.ejmech.2005.02.009.

    Google Scholar 

  2. J. S. Wilkes (2002). Green Chem. doi:10.1039/b110838g.

    Google Scholar 

  3. M. Ashok, B. S. Holla, and N. Kumari (2007). Eur. J. Med. Chem. doi:10.1016/j.ejmech.2006.09.003.

    Google Scholar 

  4. G. C. Rovnyak, K. S. Atwal, A. Hedberg, S. D. Kimball, S. Moreland, J. Z. Gougoutas, B. C. O’Reilly, J. Schwartz, and M. F. Malley (1992). J. Med. Chem. doi:10.1021/jm00095a023.

    Google Scholar 

  5. M. Yarim, S. Sarac, M. Ertan, S. F. Kilic, and K. Erol (2002). Arzneimittelforschung. doi:10.1055/s-0031-1299852.

    Google Scholar 

  6. K. S. Atwal, G. C. Rovnyak, B. C. O. Reilly, and J. Schwartz (1989). J. Org. Chem. doi:10.1021/jo00286a020.

    Google Scholar 

  7. M. Yarim, S. Sarac, S. F. Kilic, and K. Erol (2003). II Farmaco. doi:10.1016/S0014-827X(02)00009-5.

    Google Scholar 

  8. C. O. Kappe, W. M. F. Fabian, and M. A. Semones (1997). Tetrahedron. doi:10.1016/s0040-4020(97)00022-7.

    Google Scholar 

  9. K. S. Atwal, B. N. Swanson, S. E. Unger, D. M. Floyd, S. Moreland, A. Hedberg, and B. C. O’Reilly (1991). J. Med. Chem. doi:10.1021/jm00106a048.

    Google Scholar 

  10. S. P. Maradur and G. S. Gokavi (2007). Catal. Commun. doi:10.1016/j.catcom.2006.05.048.

    Google Scholar 

  11. M. Kidwani, M. Venkatramanan, and K. R. Bhushan (2000). J. Chem. Res. doi:10.3184/030823400103166292.

    Google Scholar 

  12. R. Sheldon (2001). Chem. comm. doi:10.1039/b107270f.

    Google Scholar 

  13. K. Gong, Z. W. He, Y. Xu, D. Fang, and Z. L. Liu (2008). Monatsh. Chem. doi:10.1007/s00706-008-0871-y.

    Google Scholar 

  14. T. U. Mayer, T. M. Kapoor, S. J. Haggarty, R. W. King, S. L. Schreiber, and T. J. Mitchison (1999). Science. doi:10.1126/science.286.5441.971.

    Google Scholar 

  15. Z. Hassani, M. R. Islami, and M. Kalantari (2006). Bioorg. Med. Chem. Lett. doi:10.1016/j.bmcl.2006.06.038.

    Google Scholar 

  16. S. K. De and R. A. Gibbs (2005). Synthesis. doi:10.1055/s-2005-869899.

    Google Scholar 

  17. G. Sabitha, G. S. K. Reddy, and J. S. Yadav (2003). Tetrahedron Lett. doi:10.1016/s0040-4039(03)01564-8.

    Google Scholar 

  18. J. S. Yadav, B. V. Subba Reddy, R. Sriniva, C. Venugopal, and T. Ramalingam (2001). Synthesis. doi:10.1055/s-2001-15229.

    Google Scholar 

  19. C. Jiang and D. Y. Qi (2007). Chin. Chem. Lett. doi:10.1016/j.cclet.2007.04.002.

    Google Scholar 

  20. Y. Yu, D. Liu, C. Liu, and G. Lu (2007). Bioorg. Med. Chem. Lett. doi:10.1016/j.bmcl.2006.12.068.

    Google Scholar 

  21. S. Tu, F. Fang, S. Zhu, T. Li, X. Zhang, and Q. Zhuang (2004). Synlett. doi:10.1055/s-2004-815419.

    Google Scholar 

  22. P. Salehi, M. Dabiri, M. A. Zolfigol, and M. B. A. Fard (2003). Tetrahedron Lett. doi:10.1016/s0040-4039(03)00436-2.

    Google Scholar 

  23. Z. L. Shen, W. J. Zhou, Y. T. Liu, S. J. Ji, and T. P. Loh (2008). Green Chem. doi:10.1039/b717235d.

    Google Scholar 

  24. J. J. Peng and Y. Q. Deng (2001). Tetrahedron Lett. doi:10.1016/s0040-4039(00)01974-2.

    Google Scholar 

  25. P. Wasserscheid and W. Keim (2000). Angew. Chem. doi:10.1002/1521-3773(20001103)39:21<3772:aid-anie3772>3.0.co;2-5.

    Google Scholar 

  26. K. Niralwad, B. Shingate, and M. Shingare (2010). J. Chin. Chem. Soc. doi:10.1002/jccs.201000014.

    Google Scholar 

  27. H. M. Hügel (2009). Molecules. doi:10.3390/molecules14124936.

    Google Scholar 

  28. R. Rajagopal, D. V. Jarikote, and K. V. Srinivasan (2002). Chem. Commun. doi:10.1039/b111271f.

    Google Scholar 

  29. A. Gaplovsky, M. Goplosky, S. Toma, and J. L. Luche (2000). J. Org. Chem. doi:10.1021/jo000611+.

    Google Scholar 

  30. T. Welton (1999). Chem. Rev. doi:10.1021/cr980032t.

    Google Scholar 

  31. N. N. Tonkikh, A. Strakovs, and M. V. Petrova (2004). Chem. Heterocycl. Compd. doi:10.1023/b:cohc.0000023766.76924.78.

    Google Scholar 

  32. C. Brevard, R. Schimpf, G. Tourne, et al. (1983). J. Am. Chem. Soc. doi:10.1021/ja00362a008.

    Google Scholar 

  33. M. M. Heravi, F. Derikvand, and F. Bomoharram (2005). J. Mol. Catal. A Chem. doi:10.1016/j.molcata.2005.08.009.

    Google Scholar 

  34. X. Zhao, J. Yan, X. Xue, Zh Han, Sh Cui, L. Zong, L. Zheng, Ch Shen, H. Yu, and X. Zhai (2014). Inorg. Chim. Acta. doi:10.1016/j.ica.2014.01.033.

    Google Scholar 

  35. W. G. Klemperer and R. K. C. Ho (1978). J. Am. Chem. Soc. doi:10.1021/ja00489a048.

    Google Scholar 

  36. S. Lin, X. Zhang, and M. Luo (2009). J. Solid State Eelectr. doi:10.1007/s10008-008-0735-8.

    Google Scholar 

  37. B. Karimi and D. Zareyee (2008). Org. Lett. doi:10.1021/ol8013107.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support of this research by Shahid Chamran (Ahvaz) University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariba Heidarizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozafari, R., Heidarizadeh, F. One Pot Synthesis of Octahydroquinazolinone Derivatives Using (Me (Im)12) H4CuPW11O39 as a Surfactant Type Catalyst. J Clust Sci 27, 1629–1643 (2016). https://doi.org/10.1007/s10876-016-1023-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1023-x

Keywords

Navigation