Skip to main content
Log in

Magnetic Anisotropy of Small Irn Clusters (n = 2–5)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We employ a noncollinear implementation of density functional theory (DFT) including spin–orbit coupling (SOC) interaction to calculate the magnetic properties of Irn (n = 2–5) clusters. The impact of the magnetic anisotropy on the geometric structures and magnetic properties has been analyzed. SOC leads to formation of large orbital moment and a mixing of different spin states, but does not affect the relative stability of different structural isomers for a given cluster. In order to measure the SOC effect, we further define the spin–orbit energy (Eso) and compute the exact values. Magnetic anisotropy energies (MAEs) obtained from DFT calculations are further supported by the results of torque approach. We find that MAEs of Ir2 and Ir3 in ground state configurations are 40.6 and 28.5 meV respectively, while the MAE decreases to 9 meV for Ir4. For Ir5, MAE for its ground state structure increases to 38.3 meV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Wiesendanger (2009). Rev. Mod. Phys. 81, 1495.

    Article  CAS  Google Scholar 

  2. D. Sellmyer and R. Skomski Advanced Magnetic Nanostructures (Springer, New York, 2006).

    Book  Google Scholar 

  3. P. Błoński, S. Dennler, and J. Hafner (2011). J. Chem. Phys. 134, 034107.

    Article  Google Scholar 

  4. E. M. Fernández, J. M. Soler, and L. C. Balbás (2006). Phys. Rev. B. 73, 235433.

    Article  Google Scholar 

  5. A. J. Cox, J. G. Louderback, and L. A. Bloomfield (1993). Phys. Rev. Lett. 71, 923.

    Article  CAS  Google Scholar 

  6. J. Zhao, X. Huang, P. Jin, and Z. Chen (2015). Coord. Chem. Rev. 289, 315.

    Article  Google Scholar 

  7. R. Guirado-López, J. Dorantes-Dávila, and G. Pastor (2003). Phys. Rev. Lett. 90, 226402.

    Article  Google Scholar 

  8. P. Bruno (1989). Phys. Rev. B. 39, 865.

    Article  Google Scholar 

  9. G. M. Pastor, J. Dorantes-Dávila, S. Pick, and H. Dreyssé (1995). Phys. Rev. Lett. 75, 326.

    Article  CAS  Google Scholar 

  10. M.-C. Desjonquères, C. Barreteau, G. Autès, and D. Spanjaard (2007). Phys. Rev. B 76, 024412.

    Article  Google Scholar 

  11. R. A. Guirado-López and J. M. Montejano-Carrizales (2007). Phys. Rev. B 75, 184435.

    Article  Google Scholar 

  12. X. Yuannan and A. B. John (2003). J. Phys. Condens. Matter 15, L615.

    Article  Google Scholar 

  13. O. Šipr, M. Košuth, and H. Ebert (2004). Phys. Rev. B 70, 174423.

    Article  Google Scholar 

  14. M. Niemeyer, K. Hirsch, V. Zamudio-Bayer, A. Langenberg, M. Vogel, M. Kossick, C. Ebrecht, K. Egashira, A. Terasaki, T. Möller, B. V. Issendorff, and J. T. Lau (2012). Phys. Rev. Lett. 108, 057201.

    Article  CAS  Google Scholar 

  15. J. Kortus, T. Baruah, M. R. Pederson, C. Ashman, and S. N. Khanna (2002). Appl. Phys. Lett. 80, 4193.

    Article  CAS  Google Scholar 

  16. B. V. Reddy, S. N. Khanna, and B. I. Dunlap (1993). Phys. Rev. Lett. 70, 3323.

    Article  CAS  Google Scholar 

  17. T. O. Strandberg, C. M. Canali, and A. H. MacDonald (2008). Phys. Rev. B 77, 174416.

    Article  Google Scholar 

  18. D. Fritsch, K. Koepernik, M. Richter, and H. Eschrig (2008). J. Comput. Chem. 29, 2210.

    Article  CAS  Google Scholar 

  19. J. Bartolomé, F. Bartolomé, L. M. García, E. Roduner, Y. Akdogan, F. Wilhelm, and A. Rogalev (2009). Phys. Rev. B 80, 014404.

    Article  Google Scholar 

  20. V. Sessi, K. Kuhnke, J. Zhang, J. Honolka, K. Kern, C. Tieg, O. Šipr, J. Minár, and H. Ebert (2010). Phys. Rev. B 82, 184413.

    Article  Google Scholar 

  21. L. Fernández-Seivane and J. Ferrer (2007). Phys. Rev. Lett. 99, 183401.

    Article  Google Scholar 

  22. L. Fernández-Seivane and J. Ferrer (2008). Phys. Rev. Lett. 101, 069903.

    Article  Google Scholar 

  23. H. K. Yuan, H. Chen, A. L. Kuang, B. Wu, and J. Z. Wang (2012). J. Phys. Chem. A 116, 11673.

    Article  CAS  Google Scholar 

  24. H. Häkkinen, M. Moseler, and U. Landman (2002). Phys. Rev. Lett. 89, 033401.

    Article  Google Scholar 

  25. P. Błoński and J. Hafner (2009). Phys. Rev. B 79, 224418.

    Article  Google Scholar 

  26. B. Piotr and H. Jürgen (2011). J. Phys. Condens. Matter 23, 136001.

    Article  Google Scholar 

  27. H. K. Yuan, H. Chen, A. L. Kuang, and B. Wu (2013). J. Magn. Magn. Mater. 331, 7.

    Article  CAS  Google Scholar 

  28. M. N. Huda, M. K. Niranjan, B. R. Sahu, and L. Kleinman (2006). Phys. Rev. A 73, 053201.

    Article  Google Scholar 

  29. A. Sebetci (2009). Phys. Chem. Chem. Phys. 11, 921.

    Article  CAS  Google Scholar 

  30. V. Kumar and Y. Kawazoe (2008). Phys. Rev. B 77, 205418.

    Article  Google Scholar 

  31. K. Bhattacharyya and C. Majumder (2007). Chem. Phys. Lett. 446, 374.

    Article  CAS  Google Scholar 

  32. L. Xiao and L. Wang (2004). J. Phys. Chem. A 108, 8605.

    Article  CAS  Google Scholar 

  33. A. Sebetci and Z. B. Güvenç (2003). Surf. Sci. 525, 66.

    Article  CAS  Google Scholar 

  34. W. Q. Tian, M. Ge, B. R. Sahu, D. Wang, T. Yamada, and S. Mashiko (2004). J. Phys. Chem. A 108, 3806.

    Article  CAS  Google Scholar 

  35. A. R. Miedema and K. A. Gingerich (1979). J. Phys. B 12, 2081.

    Article  CAS  Google Scholar 

  36. R. Xiao, M. D. Kuz’min, K. Koepernik, and M. Richter (2010). Appl. Phys. Lett. 97, 232501.

    Article  Google Scholar 

  37. Y. Han, G.-X. Ge, J.-G. Wan, J.-J. Zhao, F.-Q. Song, and G.-H. Wang (2013). Phys. Rev. B 87, 155408.

    Article  Google Scholar 

  38. J. C. Tung and G. Y. Guo (2010). Phys. Rev. B 81, 094422.

    Article  Google Scholar 

  39. P. Kumar, R. Skomski, and A. Kashyap (2014). Magn. IEEE Trans. 50, 1.

    Google Scholar 

  40. L. Sai, L. Tang, J. Zhao, J. Wang, and V. Kumar (2011). J. Chem. Phys. 135, 184305.

    Article  Google Scholar 

  41. J. Zhao and R.-H. Xie (2004). J. Comput. Theor. Nanosci. 1, 117.

    Article  CAS  Google Scholar 

  42. J. Zhao, R. Shi, L. Sai, X. Huang, and Y. Su (2016). Mol. Simul. doi:10.1080/08927022.2015.1121386.

    Google Scholar 

  43. G. Kresse and J. Furthmüller (1996). Phys. Rev. B 54, 11169.

    Article  CAS  Google Scholar 

  44. G. Kresse and J. Hafner (1994). Phys. Rev. B 49, 14251.

    Article  CAS  Google Scholar 

  45. G. Kresse and D. Joubert (1999). Phys. Rev. B 59, 1758.

    Article  CAS  Google Scholar 

  46. X. Wang, R. Wu, D.-S. Wang, and A. J. Freeman (1996). Phys. Rev. B 54, 61.

    Article  CAS  Google Scholar 

  47. R. Wu and A. J. Freeman (1999). J. Magn. Magn. Mater. 200, 498.

    Article  CAS  Google Scholar 

  48. J. Hu and R. Wu (2013). Phys. Rev. Lett. 110, 097202.

    Article  Google Scholar 

  49. D.-S. Wang, R. Wu, and A. J. Freeman (1993). Phys. Rev. B 47, 14932.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11574040, 11574223, 11304030), the Natural Science Foundation of Jiangsu Province (BK20150303) and the Fundamental Research Funds for the Central Universities of China (No. DUT15RC(3)099). We thank Prof. H. K. Yuan for helpful discussion on SOC calculations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Su or Jun Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Wu, X., Huang, X. et al. Magnetic Anisotropy of Small Irn Clusters (n = 2–5). J Clust Sci 27, 935–946 (2016). https://doi.org/10.1007/s10876-016-0981-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-0981-3

Keywords

Navigation