Journal of Cluster Science

, Volume 27, Issue 2, pp 703–713 | Cite as

Green Synthesis of Silver Nanoparticles Using Natural Dyes of Cochineal

  • Brajesh Kumar
  • Kumari Smita
  • Yolanda Angulo
  • Luis Cumbal
Original Paper

Abstract

Cochineal (Dactylopius coccus Costa) has been used all over the world since ancient times as a colorant. In this study, non-toxic cochineal dye was used for the synthesis of silver nanoparticles (AgNPs). The synthesized AgNPs show the presence of a surface plasmon band at 440–460 nm. Dynamic light scattering, and transmission electron microscopy indicated the formation of spherical AgNPs of diameter ranging from 20–50 nm. The X-ray diffraction analysis revealed the face centered cubic geometry of AgNPs. The synthesized AgNPs, also showed the photocatalytic degradation activity of methylene blue dye (>75 %) under direct solar light irradiation. The experimental approach is simple, cost-effective, easily reproducible at room temperature without any pollutant contribution and opens new compatibility for future pharmaceutical/biomedical applications.

Keywords

Silver nanoparticles UV–vis TEM XRD Cochineal Ecofriendly Photocatalyst 

References

  1. 1.
    P. Raveendran, J. Fu, and S. L. Wallen (2003). J. Am. Chem. Soc. 125, 13940.CrossRefGoogle Scholar
  2. 2.
    M. B. Mohamed, V. Volkov, S. Link, and M. A. E. Sayed (2000). Chem. Phys. Lett. 317, 517.CrossRefGoogle Scholar
  3. 3.
    P. Mohanpuria, N. K. Rana, and S. K. Yadav (2008). J. Nanopart. Res. 10, 507.CrossRefGoogle Scholar
  4. 4.
    V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Adv. Colloid Interface Sci. 145, 83.CrossRefGoogle Scholar
  5. 5.
    S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz (2000). Proc. Natl. Acad. Sci. 97, 996.CrossRefGoogle Scholar
  6. 6.
    M. Rai, A. Yadav, and A. Gade (2009). Biotechnol. Adv. 27, 76.CrossRefGoogle Scholar
  7. 7.
    B. Kumar, K. Smita, L. Cumbal, A. Debut, and R.N. Pathak (2014). Bioinorgan. Chem. Appl. 2014, Article ID 784268, 8 pp.Google Scholar
  8. 8.
    D. I. Gittins, D. Bethell, R. J. Nichols, and D. J. Schiffrin (2000). J. Mater. Chem. 10, 79.CrossRefGoogle Scholar
  9. 9.
    E. Solano-Ruiz, R. Sato Berrú, J. Ocotlán-Flores, and J. M. Saniger (2010). J. Nano Res. 9, 77.CrossRefGoogle Scholar
  10. 10.
    K. Shameli, M. B. Ahmad, W. M. Z. Wan Yunus, N. A. Ibrahim, Y. Gharayebi, and S. Sedaghat (2010). Int. J. Nanomed. 5, 1067.Google Scholar
  11. 11.
    Y. Zhang, F. Chen, J. Zhuang, Y. Tang, D. Yang, Y. Wang, A. Dong, and N. Ren (2002). Chem. Commun. 23, 2814.CrossRefGoogle Scholar
  12. 12.
    K. Szczepanowicz, J. Stefanska, and R. P. Socha (2010). Physicochem. Probl. Miner. Process. 45, 85.Google Scholar
  13. 13.
    I. Pastoriza-Santos and L. M. Liz-Marzán (1999). Langmuir 15, 948.CrossRefGoogle Scholar
  14. 14.
    P. Praus, M. Turicová, and M. Klementová (2009). J. Brazalian Chem. Soc. 20, 1351.CrossRefGoogle Scholar
  15. 15.
    L. Sun, Z. Zhang, and H. Dang (2003). Mater. Lett. 57, 3874.CrossRefGoogle Scholar
  16. 16.
    D. Hebbalalu, J. Lalley, M. N. Nadagouda, and R. S. Varma (2013). ACS Sustain. Chem. Eng. 1, 703.Google Scholar
  17. 17.
    A. Bankar, B. Joshi, A. R. Kumar, and S. Zinjarde (2010). Colloids Surf. A: Physicochem. Eng. Asp. 368, 58.CrossRefGoogle Scholar
  18. 18.
    B. Kumar, K. Smita, L. Cumbal, and A. Debut (2014). Ind. Crops Prod. 58, 238.CrossRefGoogle Scholar
  19. 19.
    B. Kumar, K. Smita, L. Cumbal, and A. Debut (2015). Saudi J. Biol. Sci.. doi:10.1016/j.sjbs.2015.09.006.Google Scholar
  20. 20.
    H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. Pyne, and A. Misra (2009). Colloids Surf. A: Physicochem. Eng. Asp. 348, 212.CrossRefGoogle Scholar
  21. 21.
    M. Sathishkumar, K. Sneha, S. W. Won, C.-W. Cho, S. Kim, and Y.-S. Yun (2009). Colloids Surf. B: Biointerf. 73, 332.CrossRefGoogle Scholar
  22. 22.
    B. Kumar, K. Smita, L. Cumbal, and Y. Angulo (2015). J. Mol. Liq. 211, 476.CrossRefGoogle Scholar
  23. 23.
    M. E. Borges, R. L. Tejera, L. Diaz, P. Esparaza, and E. Ibanez (2012). Food Chem. 132, 1855.CrossRefGoogle Scholar
  24. 24.
    H. Schweppe and H. Roosen-Runge in R. L. Feller (ed.), Artists’ Pigments: A Handbook of Their History and Characteristics, vol. 1 (Oxford University Press, Washington, 1986), p. 255.Google Scholar
  25. 25.
    T. Eisner, S. Nowicke, M. Goetz, and J. Meinwald (1980). Science 208, 1039.CrossRefGoogle Scholar
  26. 26.
    T. Eisner, R. Ziegler, J. L. McCormick, M. Eisner, E. R. Hoebecke, and J. Meinwald (1994). Experientia 50, 610.CrossRefGoogle Scholar
  27. 27.
    E. A. González, E. M. García, and M. A. Nazareno (2010). Food Chem. 119, 358.CrossRefGoogle Scholar
  28. 28.
    S. Yamada, N. Noda, E. Mikami, and J. Hayakawa (1993). J. Agric. Food 41, 1071.CrossRefGoogle Scholar
  29. 29.
    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz (2003). J. Phys. Chem. B 107, 668.CrossRefGoogle Scholar
  30. 30.
    M. V. Canamares, J. V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes (2006). Vib. Spectrosc. 40, 161.CrossRefGoogle Scholar
  31. 31.
    K. Jorgensen and L. H. Skibsted (1991). Food Chem. 40, 25.CrossRefGoogle Scholar
  32. 32.
    Y.-L. Tai and Z.-G. Yang (2011). J. Mater. Chem. 21, 5938.CrossRefGoogle Scholar
  33. 33.
    B. Kumar, K. Smita, and L. Cumbal (2015). J. Sol-Gel Sci. Technol.. doi:10.1007/s10971-015-3941-8.Google Scholar
  34. 34.
    T. Sinha, M. Ahmaruzzaman, and A. Bhattacharjee (2014). J. Environ. Chem. Eng. 2, (4), 2269.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Brajesh Kumar
    • 1
  • Kumari Smita
    • 1
  • Yolanda Angulo
    • 1
  • Luis Cumbal
    • 1
  1. 1.Centro de Nanociencia y NanotecnologiaUniversidad de las Fuerzas Armadas ESPESangolquiEcuador

Personalised recommendations