Green Synthesis of Silver Nanoparticles Using Natural Dyes of Cochineal
- 252 Downloads
- 3 Citations
Abstract
Cochineal (Dactylopius coccus Costa) has been used all over the world since ancient times as a colorant. In this study, non-toxic cochineal dye was used for the synthesis of silver nanoparticles (AgNPs). The synthesized AgNPs show the presence of a surface plasmon band at 440–460 nm. Dynamic light scattering, and transmission electron microscopy indicated the formation of spherical AgNPs of diameter ranging from 20–50 nm. The X-ray diffraction analysis revealed the face centered cubic geometry of AgNPs. The synthesized AgNPs, also showed the photocatalytic degradation activity of methylene blue dye (>75 %) under direct solar light irradiation. The experimental approach is simple, cost-effective, easily reproducible at room temperature without any pollutant contribution and opens new compatibility for future pharmaceutical/biomedical applications.
Keywords
Silver nanoparticles UV–vis TEM XRD Cochineal Ecofriendly PhotocatalystNotes
Acknowledgments
This scientific work has been funded by the Prometeo Project of the National Secretariat of Higher Education, Science, Technology and Innovation (SENESCYT), Ecuador. We thank Dr. Colon Velasquez (Director, INIGEMM, Ecuador) for providing XRD instrumental assistance.
Compliance with Ethical Standards
Conflict of Interests
The authors confirm they have no conflict of interests.
References
- 1.P. Raveendran, J. Fu, and S. L. Wallen (2003). J. Am. Chem. Soc. 125, 13940.CrossRefGoogle Scholar
- 2.M. B. Mohamed, V. Volkov, S. Link, and M. A. E. Sayed (2000). Chem. Phys. Lett. 317, 517.CrossRefGoogle Scholar
- 3.P. Mohanpuria, N. K. Rana, and S. K. Yadav (2008). J. Nanopart. Res. 10, 507.CrossRefGoogle Scholar
- 4.V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Adv. Colloid Interface Sci. 145, 83.CrossRefGoogle Scholar
- 5.S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz (2000). Proc. Natl. Acad. Sci. 97, 996.CrossRefGoogle Scholar
- 6.M. Rai, A. Yadav, and A. Gade (2009). Biotechnol. Adv. 27, 76.CrossRefGoogle Scholar
- 7.B. Kumar, K. Smita, L. Cumbal, A. Debut, and R.N. Pathak (2014). Bioinorgan. Chem. Appl. 2014, Article ID 784268, 8 pp.Google Scholar
- 8.D. I. Gittins, D. Bethell, R. J. Nichols, and D. J. Schiffrin (2000). J. Mater. Chem. 10, 79.CrossRefGoogle Scholar
- 9.E. Solano-Ruiz, R. Sato Berrú, J. Ocotlán-Flores, and J. M. Saniger (2010). J. Nano Res. 9, 77.CrossRefGoogle Scholar
- 10.K. Shameli, M. B. Ahmad, W. M. Z. Wan Yunus, N. A. Ibrahim, Y. Gharayebi, and S. Sedaghat (2010). Int. J. Nanomed. 5, 1067.Google Scholar
- 11.Y. Zhang, F. Chen, J. Zhuang, Y. Tang, D. Yang, Y. Wang, A. Dong, and N. Ren (2002). Chem. Commun. 23, 2814.CrossRefGoogle Scholar
- 12.K. Szczepanowicz, J. Stefanska, and R. P. Socha (2010). Physicochem. Probl. Miner. Process. 45, 85.Google Scholar
- 13.I. Pastoriza-Santos and L. M. Liz-Marzán (1999). Langmuir 15, 948.CrossRefGoogle Scholar
- 14.P. Praus, M. Turicová, and M. Klementová (2009). J. Brazalian Chem. Soc. 20, 1351.CrossRefGoogle Scholar
- 15.L. Sun, Z. Zhang, and H. Dang (2003). Mater. Lett. 57, 3874.CrossRefGoogle Scholar
- 16.D. Hebbalalu, J. Lalley, M. N. Nadagouda, and R. S. Varma (2013). ACS Sustain. Chem. Eng. 1, 703.Google Scholar
- 17.A. Bankar, B. Joshi, A. R. Kumar, and S. Zinjarde (2010). Colloids Surf. A: Physicochem. Eng. Asp. 368, 58.CrossRefGoogle Scholar
- 18.B. Kumar, K. Smita, L. Cumbal, and A. Debut (2014). Ind. Crops Prod. 58, 238.CrossRefGoogle Scholar
- 19.B. Kumar, K. Smita, L. Cumbal, and A. Debut (2015). Saudi J. Biol. Sci.. doi: 10.1016/j.sjbs.2015.09.006.Google Scholar
- 20.H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. Pyne, and A. Misra (2009). Colloids Surf. A: Physicochem. Eng. Asp. 348, 212.CrossRefGoogle Scholar
- 21.M. Sathishkumar, K. Sneha, S. W. Won, C.-W. Cho, S. Kim, and Y.-S. Yun (2009). Colloids Surf. B: Biointerf. 73, 332.CrossRefGoogle Scholar
- 22.B. Kumar, K. Smita, L. Cumbal, and Y. Angulo (2015). J. Mol. Liq. 211, 476.CrossRefGoogle Scholar
- 23.M. E. Borges, R. L. Tejera, L. Diaz, P. Esparaza, and E. Ibanez (2012). Food Chem. 132, 1855.CrossRefGoogle Scholar
- 24.H. Schweppe and H. Roosen-Runge in R. L. Feller (ed.), Artists’ Pigments: A Handbook of Their History and Characteristics, vol. 1 (Oxford University Press, Washington, 1986), p. 255.Google Scholar
- 25.T. Eisner, S. Nowicke, M. Goetz, and J. Meinwald (1980). Science 208, 1039.CrossRefGoogle Scholar
- 26.T. Eisner, R. Ziegler, J. L. McCormick, M. Eisner, E. R. Hoebecke, and J. Meinwald (1994). Experientia 50, 610.CrossRefGoogle Scholar
- 27.E. A. González, E. M. García, and M. A. Nazareno (2010). Food Chem. 119, 358.CrossRefGoogle Scholar
- 28.S. Yamada, N. Noda, E. Mikami, and J. Hayakawa (1993). J. Agric. Food 41, 1071.CrossRefGoogle Scholar
- 29.K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz (2003). J. Phys. Chem. B 107, 668.CrossRefGoogle Scholar
- 30.M. V. Canamares, J. V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes (2006). Vib. Spectrosc. 40, 161.CrossRefGoogle Scholar
- 31.K. Jorgensen and L. H. Skibsted (1991). Food Chem. 40, 25.CrossRefGoogle Scholar
- 32.Y.-L. Tai and Z.-G. Yang (2011). J. Mater. Chem. 21, 5938.CrossRefGoogle Scholar
- 33.B. Kumar, K. Smita, and L. Cumbal (2015). J. Sol-Gel Sci. Technol.. doi: 10.1007/s10971-015-3941-8.Google Scholar
- 34.T. Sinha, M. Ahmaruzzaman, and A. Bhattacharjee (2014). J. Environ. Chem. Eng. 2, (4), 2269.CrossRefGoogle Scholar