Skip to main content
Log in

Synthesis and Evaluation of Microstructural and Magnetic Properties of Cr3+ Substitution Barium Hexaferrite Nanoparticles (BaFe10.5−x Al1.5Cr x O19)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Pure barium ferrite and BaFe10.5−x Al1.5Cr x O19 (x = 0, 0.5, 1.0, 1.5, 2.0) nanoparticles were synthesized by auto-combustion sol–gel method. The effect of substituting Fe3+ ions by Al3+ and Cr3+ ions on the structural, chemical composition, morphology and magnetic properties of BaFe12O19 and BaFe10.5−x Al1.5Cr x O19 hexaferrites have been investigated using X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and vibrating sample magnetometer (VSM), respectively. The results confirmed that the hexagonal phase has been formed in all of nanoparticles and the value of lattice parameter (c) decreased, while the value of lattice parameter (a) remained nearly constant with the increase in Cr3+ ions contents in comparison to pure barium ferrite. The crystallite size and mean particle size of the nanoparticles lie in the ranges 33–42 and 35–70 nm, respectively. The VSM measurements show that with substituting Al and Cr cations in the hexagonal structure of barium ferrite, the saturation magnetization (M s ) and remanence magnetization (M r ) of the nanoparticles reduce, while coercive field (H c ) increased from 4.45 kOe for pure barium ferrite to 6.9 kOe for BaFe10.5Al1.5O19 (x = 0) due to the increase in the magnetocrystalline anisotropy and the decrease of the particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. C. Pullar (2012). Prog. Mater. Sci. 57, 1191.

    Article  CAS  Google Scholar 

  2. M. V. Kuznetsov, L. F. Barquín, Q. A. Pankhurst, and I. P. Parkin (1999). J. Phys. D 32, 2590.

    Article  CAS  Google Scholar 

  3. A. Kaewrawang, A. Ghasemi, X. Liu, and A. Morisako (2009). J. Magn. Magn. Mater. 321, 1939.

    Article  CAS  Google Scholar 

  4. C. Li, B. Huang, and J. Wang (2013). J. Mater. Sci. 48, 1702.

    Article  CAS  Google Scholar 

  5. H. Luo, B. K. Rai, S. R. Mishra, V. V. Nguyen, and J. P. Liu (2012). J. Magn. Magn. Mater. 324, 2602.

    Article  CAS  Google Scholar 

  6. A. Hojjati Najafabadi, R. Mozaffarinia, and A. Ghasemi (2015). J. Supercond. Nov. Magn. 28, 2821.

    Article  CAS  Google Scholar 

  7. B. K. Rai, S. R. Mishra, V. V. Nguyen, and J. P. Liu (2013). J. Alloys Compd. 550, 198.

    Article  CAS  Google Scholar 

  8. J. Luo (2012). Mater. Lett. 80, 162.

    Article  CAS  Google Scholar 

  9. A. Thakur, R. R. Singh, and P. B. Barman (2013). Mater. Chem. Phys. 141, 562.

    Article  CAS  Google Scholar 

  10. M. Asghari, A. Ghasemi, E. Paimozd, and A. Morisako (2013). Mater. Chem. Phys. 143, 161.

    Article  CAS  Google Scholar 

  11. I. Ali, M. U. Islam, M. S. Awan, and M. Ahmad (2013). J. Alloys Compd. 547, 118.

    Article  CAS  Google Scholar 

  12. S. Ounnunkad, P. Winotai, and J. Magn (2006). Magn. Mater. 301, 292.

    Article  CAS  Google Scholar 

  13. Q. Fang, H. Cheng, K. Huang, J. Wang, R. Li, and Y. Jiao (2005). J. Magn. Magn. Mater. 294, 281.

    Article  CAS  Google Scholar 

  14. M. Liu, X. Shen, F. Song, J. Xiang, and X. Meng (2011). J. Solid State Chem. 184, 871.

    Article  CAS  Google Scholar 

  15. F. Khademi, A. Poorbafrani, P. Kameli, and H. Salamati (2012). J. Supercond. Nov. Magn. 25, 525.

    Article  CAS  Google Scholar 

  16. A. Thakur, R. R. Singh, and P. B. Barman (2013). J. Magn. Magn. Mater. 326, 35.

    Article  CAS  Google Scholar 

  17. A. Roberts, Y. Cui, and K. L. Verosub (1995). J. Geophys. Res. 100, 17909.

    Article  Google Scholar 

  18. Y. Xu, G. L. Yang, D. P. Chu, and H. R. Zhai (1990). J. Physica Status Solidi B 157, 685.

    Article  CAS  Google Scholar 

  19. G. Albanese, M. Carbucicchio, and A. Deriu (1973). J. II Nuovo Cimento B 15, 17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Hojjati Najafabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hojjati Najafabadi, A., Ghasemi, A. & Mozaffarinia, R. Synthesis and Evaluation of Microstructural and Magnetic Properties of Cr3+ Substitution Barium Hexaferrite Nanoparticles (BaFe10.5−x Al1.5Cr x O19). J Clust Sci 27, 965–978 (2016). https://doi.org/10.1007/s10876-015-0963-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0963-x

Keywords

Navigation