Skip to main content
Log in

Computational Studies on the Mo-Doped Gold Nanoclusters Au n Mo(n = 1–10): Structures, Stabilities and Magnetic Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The geometric structures, relative stabilities, magnetic properties of Mo-doped gold clusters Au n Mo(n = 1–10) have been investigated at the PBE1PBE/def2TZVP level of theory. The results show that molybdenum doping has a significant effect on the geometric structures and electronic properties of Au n Mo(n = 1–10) clusters. For the lowest energy structures of Au n Mo(n = 1–10), the two dimensional to three dimensional transition occurs at cluster size n ≥ 8, and their relative stabilities exhibit odd–even oscillation with the change of Au atom number. It is found that charge in corresponding Au n Mo clusters transfers from Mo atom to Au n host in the size range n = 1–7, whereas the charge in opposition direction in the size range n = 8–10. In addition, the magnetic properties of Au n Mo clusters are enhanced after doping single Mo atom into the corresponding gold clusters. Our results are valuable for the design of magnetic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. De Sekhar, S. Krishnamurty, and S. Pal (2010). J. Phys. Chem. C 114, 6690.

    Article  Google Scholar 

  2. M. Boronat, A. Leyva-PÉrez, and A. Corma (2014). Acc. Chem. Res. 47, 834.

    Article  CAS  Google Scholar 

  3. N. K. Jena, K. R. S. Chandrakumar, and S. K. Ghosh (2011). J. Phys. Chem. Lett. 2, 1476.

    Article  CAS  Google Scholar 

  4. M. Zhang, H. Y. Zhang, L. N. Zhao, Y. Li, and Y. H. Luo (2012). J. Phys. Chem. A 116, 1493.

    Article  CAS  Google Scholar 

  5. J. Sui, X. Q. Wang, and P. L. An (2014). Comput. Theor. Chem. 1028, 98.

    Article  CAS  Google Scholar 

  6. C. J. Wang, X. Y. Kuang, H. Q. Wang, H. F. Li, J. B. Gu, and J. Liu (2012). Comput. Theor. Chem. 1002, 31.

    Article  CAS  Google Scholar 

  7. Y. Gao, X. Dai, S. G. Kang, C. A. Jimenez-Cruz, M. Xin, Y. Meng, J. Han, Z. G. Wang, and R. H. Zhou (2014). Sci. Rep. 4, 5862.

    CAS  Google Scholar 

  8. M. A. Shestopalov, A. Y. Ledneva, S. Phane Cordier, O. Hernandez, M. Potel, T. Roisnel, N. G. Naumov, and C. Perrin (2011). Angew. Chem. Int. Ed. 50, 7300.

    Article  CAS  Google Scholar 

  9. P. Pyykkö and N. Runberg (2002). Angew. Chem. 114, 2278.

    Article  Google Scholar 

  10. X. Li, B. Kiran, J. Li, H. J. Zhai, and L. S. Wang (2002). Angew. Chem. Int. Ed. 41, 4786.

    Article  CAS  Google Scholar 

  11. D. Hossain Jr, C. U. Pittman, and S. R. Gwaltney (2014). J. Inorg. Organomet. Polym. 24, 241.

    Article  CAS  Google Scholar 

  12. D. K. Niakolasa, M. Athanasiou, V. Dracopoulosa, I. Tsiaoussisc, S. Bebelis, and S. G. Neophytidesa (2013). Appl. Catal. A Gen. 456, 223.

    Article  Google Scholar 

  13. X. Lian, W. L. Guo, F. L. Liu, Y. Yang, P. Xiao, Y. H. Zhang, and W. Q. Tian (2015). Comput. Mater. Sci. 96, 237.

    Article  CAS  Google Scholar 

  14. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  15. B. Chan and Y. L. Yim (2013). J. Chem. Theory. Comput. 9, 1964.

    Article  CAS  Google Scholar 

  16. M. J. Frisch, et al. Gaussian 09, revision C.01 (Gaussian, Inc, Wallingford, 2009).

    Google Scholar 

  17. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales. Weinhold, F. NBO 5.0. 2001 (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI,) http://www.chem.wisc.edu/~nbo5

  18. T. Lu and F. W. Chen (2012). J. Comput. Chem. 33, 580.

    Article  Google Scholar 

  19. T. Lu and F. W. Chen (2012). J. Mol. Graph. Model. 38, 314.

    Article  Google Scholar 

  20. M. D. Morse (1986). Chem. Rev. 86, 1049.

    Article  CAS  Google Scholar 

  21. M. A. Tafoughalt and M. Samah (2014). Comput. Theor. Chem. 1033, 23.

    Article  CAS  Google Scholar 

  22. L. Cheng, K. X. Yu, Z. W. Lu, A. J. Mao, and Y. M. Ma (2011). J. Phys. Chem. A 115, 9273.

    Article  Google Scholar 

  23. C. Jackschath, I. Rabin, and W. Schulze (1992). Ber. Bunsenges. Phys. Chem. 96, 1200.

    Article  CAS  Google Scholar 

  24. R. G. Pearson Chemical Hardness: Applications from Molecules to Solids (Wiley, Weinheim, 1997).

    Book  Google Scholar 

Download references

Acknowledgments

We thank the Shanghai Supercomputer Center for access to the high performance computing service and program support. This work is supported by the foundation of Yan’an University (YDQ2014-32), and the foundation of College of Chemistry & Chemical Engineering of Yan’an University (YDHG2014-Z04). Innovation and entrepreneurship training program of college students of Shaanxi Province (1449). The National College students’ innovative entrepreneurial training plan (201510719288). The National Natural Science Foundation of China (21543017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Cao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Li, Q., Wang, Z.X. et al. Computational Studies on the Mo-Doped Gold Nanoclusters Au n Mo(n = 1–10): Structures, Stabilities and Magnetic Properties. J Clust Sci 27, 993–1004 (2016). https://doi.org/10.1007/s10876-015-0961-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0961-z

Keywords

Navigation