Skip to main content
Log in

Selective Oxidation of Sulfides to Sulfones by H2O2 Catalyzed by Fe-Substituted Sandwich Type Polyoxometalate

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Catalytic activity of the sandwich-type heteropolytungstates ([(XW9O39)M4](n−m)−, where X = P, Si, As and M = Mn, Fe, Co, Ni, Cu and Zn) in the selective oxidation of sulfides to corresponding sulfone with aqueous H2O2 have been studied in acetonitrile. In comparison, different sandwich type polyoxometalates with various transition metals substituted and heteroatoms, TBAPWFe was found to be more active to each other’s. This catalyst with 2.5 equivalent of hydrogen peroxide, converted various sulfides to the corresponding sulfone with 96.8–99 % selectivity at 94–97 % conversion. Furthermore, for oxidizing various sulfides to the corresponding sulfone, the sulfide function is highly reactive and other functional groups such as the double bond and hydroxyl group are tolerable. This catalyst indicated very good reusability in the oxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Nakayama and Y. Sugihara (1999). Top. Curr. Chem. 205, 131.

    Article  CAS  Google Scholar 

  2. O. DeLucchi, D. Fabbri, and V. Lucchini (1992). Tetrahedron 48, 1485.

    Article  CAS  Google Scholar 

  3. S. Gronowitz, G. Nikitidis, A. Hallberg, and R. Servin (1988). J. Org. Chem. 53, 3351.

    Article  CAS  Google Scholar 

  4. C. Najera and J. M. Sansano (1998). Recent Res. Dev. Org. Chem. 2, 637.

    CAS  Google Scholar 

  5. D. Mctavish, M. Buckley, and K. C. Hell (1991). Drugs 47, 138.

    Article  Google Scholar 

  6. P. Richardson, C. J. Hawkey, and W. A. Stack (1998). Drugs 56, 307.

    Article  CAS  Google Scholar 

  7. R. Kubec, M. Svobodov, and J. Velisek (2000). J. Agric. Food Chem. 48, 428.

    Article  CAS  Google Scholar 

  8. M. Sovova and P. Sova (2003). Ceska Slov. Farm. 52, 82.

    CAS  Google Scholar 

  9. W. Komatsu, Y. Miura, and K. Yagasaki (1998). Lipids 33, 499.

    Article  CAS  Google Scholar 

  10. W. Qian and L. Pei (2006). Synlett 5, 709.

    Article  Google Scholar 

  11. A. A. Linden, M. Johansson, N. Hermanns, and J.-E. Backvall (2006). J. Org. Chem. 71, 3849.

    Article  CAS  Google Scholar 

  12. G. Maayan, R. Popovitz-Biro, and R. Neumann (2006). J. Am. Chem. Soc. 128, 4968.

    Article  CAS  Google Scholar 

  13. J.-E. Backvall (ed.) Modern Oxidation Methods (Wiley, Weinheim, 2004), pp. 193–222.

    Google Scholar 

  14. K. Kaczorowska, Z. Kolarska, K. Mitka, and P. Kowalski (2005). Tetrahedron 61, 8315.

    Article  CAS  Google Scholar 

  15. K. Sato, M. Hyodo, M. Aoki, Z.-Q. Zheng, and R. Noyori (2001). Tetrahedron 57, 2469.

    Article  CAS  Google Scholar 

  16. F. Vandevelde, I. W. Arends, and R. A. Sheldon (2000). J. Inorg. Biochem. 80, 81.

    Article  CAS  Google Scholar 

  17. M. Mba, L. J. Prins, and G. Licini (2007). Org. Lett. 9, 21.

    Article  CAS  Google Scholar 

  18. M. Mba, M. Pontini, S. Lovat, C. Zonta, G. Bernardinelli, P. E. Kundig, and G. Licini (2008). Inorg. Chem. 47, 8616.

    Article  CAS  Google Scholar 

  19. J. Brinksma, R. La Crois, B. L. Feringa, M. I. Donnoli, and C. Rosini (2001). Tetrahedron Lett. 42, 4049.

    Article  CAS  Google Scholar 

  20. W. D. Kerber, B. Ramdhanie, and D. P. Goldberg (2007). Angew. Chem. Int. Ed. 46, 3718.

    Article  CAS  Google Scholar 

  21. K. Kamata, M. Kotani, K. Yamaguchi, S. Hikichi, and N. Mizuno (2007). Chem. Eur. J. 13, 639.

    Article  CAS  Google Scholar 

  22. M. Carraro, L. Sandei, A. Sartorel, G. Scorrano, and M. Bonchio (2006). Org. Lett. 8, 3671.

    Article  CAS  Google Scholar 

  23. M. T. Pope Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).

    Book  Google Scholar 

  24. M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. Engl. 30, 34.

    Article  Google Scholar 

  25. C. L. Hill (1998). Chem. Rev., 98 (special thematic issue)

  26. M. T. Pope and A. Müller (eds.) Polyoxometalate Chemistry: From Topology via Self-assembly to Applications (Kluwer, Dordrecht, 2001).

    Google Scholar 

  27. M. T. Pope and A. Müller (eds.) Polyoxometalates: From Platonic Solids to Anti-retroviral Activity (Kluwer, Dordrecht, 1993).

    Google Scholar 

  28. T. Yamase, H. Fujita, and K. Fukushima (1988). Inorg. Chim. Acta 151, 15.

    Article  CAS  Google Scholar 

  29. H. Du, C. Wang, Y. Li, Y. Niu, and H. Hou (2015). RSC Adv. 5, 74065.

    Article  CAS  Google Scholar 

  30. C. L. Hill (2007). J. Mol. Catal. A Chem. 262, (1–2), 2.

    Article  CAS  Google Scholar 

  31. C. L. Hill and C. M. Prosser-McCartha (1995). Coord. Chem. Rev. 143, 407.

    Article  CAS  Google Scholar 

  32. L. Bi, U. Kortz, B. Keita, L. Nadjo, and H. Borrmann (2004). Inorg. Chem. 43, 8367.

    Article  CAS  Google Scholar 

  33. C. L. Hill and R. B. Brown (1986). J. Am. Chem. Soc. 108, 536.

    Article  CAS  Google Scholar 

  34. Y. Hou, L. Xu, M. J. Cichon, S. Lense, K. I. Hardcastle, and C. L. Hill (2010). Inorg. Chem. 49, 4125.

    Article  CAS  Google Scholar 

  35. D. Sloboda-Rozner, P. Witte, P. L. Alsters, and R. Neumann (2004). Adv. Synth. Catal. 346, 339.

    Article  CAS  Google Scholar 

  36. R. Neumann (1998). Prog. Inorg. Chem. 47, 317.

    Article  CAS  Google Scholar 

  37. R. Neumann, in J. -E. Baeckvall (ed), Modern Oxidation Methods (Wiley, Weinheim, 2004), pp. 223–251

  38. R. Neumann, in M. Beller and C. Bolm (eds.), Transition Metals for Organic Synthesis, 2nd ed., vol. 2 (Wiley, Weinheim, 2004), pp. 415–426.

  39. R. Neumann, A. M. Khenkin, D. Juwiler, H. Miller, and M. Gara (1997). J. Mol. Catal. 117, 169.

    Article  CAS  Google Scholar 

  40. R. Neumann and M. Gara (1995). J. Am. Chem. Soc. 117, 5066–5074.

    Article  CAS  Google Scholar 

  41. X. Zhang, T. M. Anderson, Q. Chen, and C. L. Hill (2001). Inorg. Chem. 40, 418.

    Article  CAS  Google Scholar 

  42. D. Sloboda-Rozner, P. L. Alsters, and R. Neumann (2003). J. Am. Chem. Soc. 125, 5280.

    Article  Google Scholar 

  43. H. Haddadi, S. M. Hafshejani, M. R. Farsani, and A. K. Babahydari (2015). New J. Chem. 39(12), 9879.

    Article  CAS  Google Scholar 

  44. R. Afrasiabi, F. Jalilian, B. Yadollahi, and M. R. Farsani (2014). Inorg. Chem. Commun 50, 113.

    Article  CAS  Google Scholar 

  45. M. R. Farsani and B. Yadollahi (2014). J. Mol. Catal A 392, 8.

    Article  CAS  Google Scholar 

  46. R. Afrasiabi, M. R. Farsani, and B. Yadollahi (2014). Tetrahedron Lett. 55, 3923.

    Article  CAS  Google Scholar 

  47. M. R. Farsani, F. Jalilian, B. Yadollahi, and H. A. Rudbari (2014). Polyhedron 76, 102.

    Article  CAS  Google Scholar 

  48. M. R. Farsani, B. Yadollahi, H. A. Rudbari, A. Amini, T. Caradoc-Davis, and J. R. Price (2014). Inorg. Chem. Commun. 43, 39.

    Article  CAS  Google Scholar 

  49. M. R. Farsani, F. Jalilian, B. Yadollahi, and H. A. Rudbari (2015). Appl. Organomet. Chem. 29, 7.

    Article  Google Scholar 

  50. F. Jalilian, B. Yadollahi, M. R. Farsani, S. Tangestaninejad, H. A. Rudbari, and R. Habibi (2015). Catal. Commun. 66, 107.

    Article  CAS  Google Scholar 

  51. F. Jalilian, B. Yadollahi, M. R. Farsani, S. Tangestaninejad, H. A. Rudbari, and R. Habibi (2015). RSC Adv. 5, (86), 70424.

    Article  CAS  Google Scholar 

  52. A. Tézé and G. Hervé (1990). Inorg. Synth. 27, 85.

    Article  Google Scholar 

  53. R. G. Finke, M. W. Droege, and P. J. Domaille (1987). Inorg. Chem. 26, 3886.

    Article  CAS  Google Scholar 

  54. T. J. R. Weakley and R. G. Finke (1990). Inorg. Chem. 29, 1235.

    Article  CAS  Google Scholar 

  55. X. Zhang, Q. Chen, D. C. Duncan, R. J. Lachicotte, and C. L. Hill (1997). Inorg. Chem. 36, 4381.

    Article  CAS  Google Scholar 

  56. C. J. Gomez-Garcia, E. Coronado, P. Gomez-Romero, and N. Casan-Pastor (1993). Inorg. Chem. 32, 3381.

    Google Scholar 

  57. I. C. M. S. Santos, J. A. F. Gamelas, M. S. S. Balula, M. M. Q. Simoes, M. G. P. M. S. Neves, J. A. S. Cavaleiro, and A. M. V. Cavaleiro (2007). J. Mol. Catal. A Chem. 262, 41.

    Article  CAS  Google Scholar 

  58. U. Kortz, S. Isber, M. H. Dickman, and D. Ravot (2000). Inorg. Chem. 39, 2915.

    Article  CAS  Google Scholar 

  59. P. E. Car, M. Guttentag, K. K. Baldridge, R. Albertoa, and G. R. Patzke (2012). Green Chem. 14, 1680.

    Article  CAS  Google Scholar 

  60. L. H. Bi, R. D. Huang, J. Peng, E. B. Wang, Y. H. Wang, and C. W. Hu (2001). J. Chem. Soc. Dalton Trans. doi:10.1039/B006804G.

    Google Scholar 

  61. R. Neumann and M. Gara (1994). J. Am. Chem. Soc. 116, 5509.

    Article  CAS  Google Scholar 

  62. S. Nlate, L. Plault, and D. Astruc (2006). Chem. Eur. J. 12, 903.

    Article  CAS  Google Scholar 

  63. D. C. Duncan, R. C. Chambers, E. Hecht, and C. L. Hill (1995). J. Am. Chem. Soc 117, 681.

    Article  CAS  Google Scholar 

  64. M. Carraro, L. Sandei, A. Sartorel, G. Scorrano, and M. Bonchio (2006). Org. Lett. 8, 3671.

    Article  CAS  Google Scholar 

  65. Z. E. A. Abdallaa, B. Li, and A. Tufail (2009). Colloids Surf. A 341, 86.

    Article  Google Scholar 

  66. N. Mizuno, K. Yamaguchi, and K. Kamata (1944). Coord. Chem. Rev. 2005, 249.

    Google Scholar 

  67. K. Kamata, K. Yonehare, Y. Sumida, K. Yamaguchi, S. Hikichi, and N. Mizuno (2003). Science. 300, 964.

    Article  CAS  Google Scholar 

  68. K. Kamata, K. Yonehara, Y. Nakagawa, K. Uehara, and N. Mizuno (2010). Nat. Chem. 2, 478.

    Article  CAS  Google Scholar 

  69. Q. Yin, J. M. Tan, C. Besson, Y. M. Geletiij, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, and C. L. Hill (2010). Science 328, 342.

    Article  CAS  Google Scholar 

  70. J. J. Stracke and R. G. Finke (2011). J. Am. Chem. Soc. 133, 14872.

    Article  CAS  Google Scholar 

  71. A. M. Morris, O. P. Anderson, and R. G. Finke (2009). Inorg. Chem. 48, 4411.

    Article  CAS  Google Scholar 

  72. A. Nisar, Y. Lu, J. Zhuang, and X. Wang (2011). Angew. Chem. 123, 3245.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge gratefully the support of the Research council of Shahrekord University for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedayat Haddadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddadi, H., Farsani, M.R. Selective Oxidation of Sulfides to Sulfones by H2O2 Catalyzed by Fe-Substituted Sandwich Type Polyoxometalate. J Clust Sci 27, 373–386 (2016). https://doi.org/10.1007/s10876-015-0936-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0936-0

Keywords

Navigation