Journal of Cluster Science

, Volume 27, Issue 1, pp 351–360 | Cite as

Effect of Sulfur Source on Cadmium Sulfide Nanostructures Morphologies via Simple Hydrothermal Route

  • Elaheh Esmaeili
  • Mohammad Sabet
  • Masoud Salavati-Niasari
  • Zabihullah Zarghami
  • Samira Bagheri
Original Paper


Different morphologies of cadmium sulfide nanostructures were synthesized via the reaction among a new inorganic precursor, cadmium phthalate, [Cd(pht)(H2O)] n , and different sulfur sources. The as-synthesized CdS nanosturctures were characterized by X-ray diffraction pattern, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction. This study focuses on the effect of different sulfur sources on the crystal phase and morphology of the products.


Cadmium sulfide Nanostructures Organometallic compounds Inorganic compounds 



Authors are grateful to the council of Iran National Science Foundation and University of Kashan for their unending effort to provide financial support to undertake this work by Grant No (159271/627).


  1. 1.
    P. Liska, K. R. Thampi, M. Gratzel, D. Bremaud, D. Rudmann, H. M. Upadhyaya, and A. N. Tiwari (2006). Appl. Phys. Lett. 88, 203103.CrossRefGoogle Scholar
  2. 2.
    J. Chen, S. L. Li, Q. Xu, and K. Tanaka (2002). Chem. Commun. 16, 1722–1723.CrossRefGoogle Scholar
  3. 3.
    C. Karunakaran and S. Senthilvelan (2005). Sol. Energy 79, 505–512.CrossRefGoogle Scholar
  4. 4.
    N. Z. Bao, L. M. Shen, T. Takata, and K. Domen (2008). Chem. Mater. 20, 110–117.CrossRefGoogle Scholar
  5. 5.
    V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi (2000). Science 290, 314–316.CrossRefGoogle Scholar
  6. 6.
    A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou (2005). Small 1, 980–983.CrossRefGoogle Scholar
  7. 7.
    K. Sato, Y. Tachibana, S. Hattori, T. Chiba, and S. Kuwabata (2008). J Colloid Interface Sci 324, 257–260.CrossRefGoogle Scholar
  8. 8.
    M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. E-Sayed (1998). J. Phys. Chem. B 102, 9370–9374.CrossRefGoogle Scholar
  9. 9.
    M. Zhou, S. Yan, Y. Shi, M. Yang, H. Sun, J. Wang, Y. Yin, and F. Gao (2013). Appl. Surf. Sci. 273, 89–93.CrossRefGoogle Scholar
  10. 10.
    Y. Li, H. Liao, Y. Ding, Y. Fan, Y. Zhang, and Y. Qian (1999). Inorg. Chem. 38, 1382–1387.CrossRefGoogle Scholar
  11. 11.
    M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2008). Chem. Eng. J. 145, 346–350.CrossRefGoogle Scholar
  12. 12.
    M. Salavati-Niasari, F. Davar, and M. R. Loghman-Estarki (2009). J. Alloys Compd 481, 776–780.CrossRefGoogle Scholar
  13. 13.
    X. W. Ge, Y. H. Ni, and Z. C. Zhang (2002). Radiat. Phys. Chem. 64, 223–227.CrossRefGoogle Scholar
  14. 14.
    J. T. Hu, T. W. Odom, and C. M. Lieber (1999). Acc. Chem. Res. 32, 435–445.CrossRefGoogle Scholar
  15. 15.
    H. Q. Gao, Y. Hu, J. M. Hong, H. B. Liu, G. Yin, B. L. Li, C. Y. Tie, and Z. Xu (2001). Adv. Mater. 13, 1393–1394.CrossRefGoogle Scholar
  16. 16.
    Y. J. Xiong, Y. Xie, J. Yang, R. Zhang, C. Z. Wu, and G. A. Du (2002). J. Mater. Chem. 12, 3712–3716.CrossRefGoogle Scholar
  17. 17.
    M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2009). Inorganica Chim. Acta 362, 3677–3683.CrossRefGoogle Scholar
  18. 18.
    G. Tai and W. Guo (2008). Ultrason. Sonochem. 15, 350–356.CrossRefGoogle Scholar
  19. 19.
    F. H. Zhao, Q. Su, N. S. Xu, C. R. Ding, and M. M. Wu (2006). J. Mater. Sci. 41, 1449–1454.CrossRefGoogle Scholar
  20. 20.
    W. Qingqing, X. Gang, and H. Gaorong (2006). Cryst. Growth Des. 6, 1776–1780.CrossRefGoogle Scholar
  21. 21.
    M. Chen, L. Pan, J. Cao, H. Ji, G. Ji, X. Ma, and Y. Zheng (2006). Mater. Lett. 60, 3842–3845.Google Scholar
  22. 22.
    X. Liu (2005). Mater. Chem. Phys. 91, 212–216.CrossRefGoogle Scholar
  23. 23.
    X.-H. Yang, Q.-S. Wu, L. Li, Y.-P. Ding, and G.-X. Zhang (2005). Colloids Surf. A 264, 172–178.CrossRefGoogle Scholar
  24. 24.
    C. J. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber (2003). J. Am. Chem. Soc. 125, 11498–11499.CrossRefGoogle Scholar
  25. 25.
    F. Davar, M. Salavati-Niasari, and M. Mazaheri (2009). Polyhedron 28, 3975–3978.CrossRefGoogle Scholar
  26. 26.
    M. Muruganandham, Y. Kusumoto, C. Okamoto, A. Muruganandham, M. Abdulla-Al-Mamun, and B. Ahmmad (2009). J. Phys. Chem. C 113, 19506–19517.CrossRefGoogle Scholar
  27. 27.
    S. G. Baca, I. G. Filippova, O. A. Gherco, M. Gdaniec, Y. A. Simonov, N. V. Gerbeleu, P. Franz, R. Basler, and S. Decurtins (2004). Inorgan. Chim. Acta 357, 3419–3429.CrossRefGoogle Scholar
  28. 28.
    E. Cardarelli, G. D’Ascenzo, A. D. Magrí, and A. Pupella (1979). Thermochim. Acta 33, 267–273.CrossRefGoogle Scholar
  29. 29.
    M. Salavati-Niasari, E. Esmaeili, and F. Davar (2013). Combin. Chem. High Throughput Screen. 16, 47–56.CrossRefGoogle Scholar
  30. 30.
    H. Klug and L. Alexander (eds.) X-ray Diffraction Procedures (Wiley, New York, 1962), p. 125.Google Scholar
  31. 31.
    X. He and L. Gao (2009). J. Phys. Chem. C 113, 10981–10989.CrossRefGoogle Scholar
  32. 32.
    F. Davar, M. R. Loghman-Estarki, M. Salavati-Niasari, and R. Ashiri (2014). Int. J. Appl. Ceramic Technol. 11, 637–644.CrossRefGoogle Scholar
  33. 33.
    D. Ghanbari, M. Salavati-Niasari, S. Karimzadeh, and S. Gholamrezaei (2014). J. Nanostruct. 4, 227–232.Google Scholar
  34. 34.
    H. R. Momenian, M. Salavati-Niasari, D. Ghanbari, B. Pedram, F. Mozaffar, and S. Gholamrezaei (2014). J. Nanostruct. 4, 99–104.CrossRefGoogle Scholar
  35. 35.
    G. Nabiyouni, S. Sharifi, D. Ghanbari, and M. Salavati-Niasari (2014). J. Nanostruct. 4, 317–323.Google Scholar
  36. 36.
    M. Panahi-Kalamuei, M. Mousavi-Kamazani, and M. Salavati-Niasari (2014). J. Nanostruct. 4, 459–465.Google Scholar
  37. 37.
    F. Beshkar and M. Salavati-Niasari (2015). J. Nanostruct. 4, 17–23.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Elaheh Esmaeili
    • 1
  • Mohammad Sabet
    • 2
  • Masoud Salavati-Niasari
    • 1
  • Zabihullah Zarghami
    • 3
  • Samira Bagheri
    • 4
  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIran
  2. 2.Department of Chemistry, Faculty of ScienceVali-E-Asr UniversityRafsanjanIran
  3. 3.Young Researchers and Elites Club, Arak BranchIslamic Azad UniversityArakIran
  4. 4.Centre for Research in Nanotechnology & Catalysis (NANOCAT); 3rd Floor, Block A, Institute of Postgraduate Studies (IPS)University of MalayaKuala LumpurMalaysia

Personalised recommendations