Skip to main content
Log in

Liquid–Air Interface Self-Assembly of Nanoparticles Synthesized from Reaction Between Fe(dbm)3 and Pt(acac)2

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The liquid–air interface is demonstrated as a method to assemble nanoparticles synthesized from the reaction between iron (III) dibenzoylmethane (Fe(dbm)3) and platinum acetylacetonate (Pt(acac)2) into a long range monolayer. These surface-modified particles have average Fe to Pt atomic ratio of 0.77:1. The increase in surfactants further reduces the Fe:Pt ratio and increases the particle diameter to over 4 nm. The self-assembled pattern of FePt-based nanoparticles can be enhanced by dropping nanoparticle suspensions on the surface of diethelyne glycol (DEG). The concentrations of these nanoparticle suspensions in hexane from 0.2 to 0.4 mg/ml can be used without the agglomeration into multilayered islands. The voids in the self-assembled monolayer on the DEG-air interface are reduced to the minimum in the case of the lowest concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. H.-W. Zhang, Y. Liu, and S.-H. Sun (2010). Front. Phys. China 5, 347.

    Article  CAS  Google Scholar 

  2. L.-Y. Lu, L.-N. Yu, X.-G. Xu, and Y. Jiang (2013). Rare Met. 32, 323.

    Article  CAS  Google Scholar 

  3. M. A. Neouze (2013). J. Mater. Sci. 48, 7321.

    Article  CAS  Google Scholar 

  4. S. A. Sebt, A. Khajehnezhad, R. S. Dariani, and M. Akhavan (2013). J. Inorg. Organomet. Polym. 23, 881.

    Article  CAS  Google Scholar 

  5. S.-H. Sun (2006). Adv. Mater. 18, 393.

    Article  CAS  Google Scholar 

  6. S. Chen and P. Andre (2012). Int. J. Nanotechnol. 9, 39.

    Article  Google Scholar 

  7. V. Nandwana, K. E. Elkins, N. Poudyal, G. S. Chaubey, K. Yano, and J. P. Liu (2007). J. Phys. Chem. C 111, 4185.

    Article  CAS  Google Scholar 

  8. H. Zeynali, S. A. Sebt, H. Arabi, and H. Akbari (2012). J. Clust. Sci. 23, 1107.

    Article  CAS  Google Scholar 

  9. L. A. W. Green, T. T. Thuy, D. M. Mott, S. Maenosono, and N. T. K. Thanh (2014). RSC Adv. 4, 1039.

    Article  CAS  Google Scholar 

  10. S. A. Sebt and S. S. Parhizgar (2014). Trans. Ind. Inst. Met. 67, 41.

    Article  CAS  Google Scholar 

  11. K. Chokprasombat, P. Harding, C. Sirisathitkul, W. Tangwatanakul, S. Pinitsoontorn, and P. Muneesawang (2014). J. Nanopart. Res. 16, 2436.

    Article  Google Scholar 

  12. T. Hyeon (2003). Chem. Commun. 2003, 927.

    Article  Google Scholar 

  13. K. Chokprasombat, C. Sirisathitkul, and P. Ratphonsan (2014). Surf. Sci. 621, 162.

    Article  CAS  Google Scholar 

  14. N. S. Nandurkar, D. S. Patil, and B. M. Bhanage (2008). Inorg. Chem. Commun. 11, 733.

    Article  CAS  Google Scholar 

  15. K. Chokprasombat, Y. Sirisathitkul, C. Sirisathitkul, P. Sarmphim, and P. Harding (2015). J. Supercond. Nov. Magn. 28, 1199.

    Article  CAS  Google Scholar 

  16. M. Tanase, J.-G. Zhu, C. Liu, N. Shukla, T. J. Klemmer, D. Weller, and D. E. Laughlin (2007). Metall. Mater. Trans. A 38, 798.

    Article  Google Scholar 

  17. K. Chokprasombat, K. Koyvanich, C. Sirisathitkul, P. Harding, and S. Rugmai (2015). Trans. Ind. Inst. Met. doi:10.1007/s12666-015-0545-5.

    Google Scholar 

  18. C.-B. Rong, D. Li, V. Nandwana, N. Poudyal, Y. Ding, Z.-L. Wang, H. Zeng, and J.-P. Liu (2006). Adv. Mater. 18, 2984.

    Article  CAS  Google Scholar 

  19. Y. K. Takahashi, T. Ohkubo, M. Ohnuma, and K. Hono (2003). J. Appl. Phys. 93, 7166.

    Article  CAS  Google Scholar 

  20. C. Zhang, H. Wang, Y. Mu, J. Zhang, and H. Wang (2014). Nanoscale Res. Lett. 9, 615.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Walailak University (WU58123). We are grateful to Prof. Dr. Thomas Randall Lee of University of Houston for his guidance and facility support in the nanoparticle synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaowarat Sirisathitkul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmphim, P., Chokprasombat, K., Sirisathitkul, C. et al. Liquid–Air Interface Self-Assembly of Nanoparticles Synthesized from Reaction Between Fe(dbm)3 and Pt(acac)2 . J Clust Sci 27, 1–8 (2016). https://doi.org/10.1007/s10876-015-0922-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0922-6

Keywords

Navigation