Skip to main content
Log in

Jelliumatic Shell Model

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Jelliumatic shell model (JSM), a variant of jellium model (JM), is proposed in an attempt to rationalize the electron counts of four metal clusters that “violate” the global jelliumatic model (GJM): (1) for the spherically shaped [Cu28H15(S2CNR)12]+, the global jelliumatic electron (gje) count of 30 is partitioned into three electronic shells of {[H]@[Cu4H6]2+@[Cu24H8(S2CNR)12]}+ with 2, 8, and 20 jelliumatic shell electrons (jse); each shell conforms to JM for a spherical shape; (2) for the [Cu20H11{S2P(OiPr)2}9] cluster, the gje of 22 can be divided into two electronic shells of {[Cu2H5]3−@[Cu18H6L9]3+} with jse of 10 and 12, respectively; each shell satisfies JM for a prolate ellipsoidal shape; (3) for the [Cu32H20{S2P(OiPr)2}12] cluster, with an overall prolate molecular shape, the gje of 40 can be subdivided into three electronic shells of {[Cu12H6]2+@[Cu2H6]4−@[Cu18H8L12]2+} with 16, 12, and 12 jse, in harmony with an oblate ellipsoidal shape for the [Cu12H6]2+ core and prolate ellipsoidal shapes for the [Cu2H6]4− and [Cu18H8L12]2+ shells, respectively; and (4) for the spherical-shaped intermetalloid {[Sn]4−@[Cu12]4+@[Sn20]12−}12− and {[As]3−@[Ni12]8−@[As20]8+}3− clusters, the gje of 108 can be apportioned into three electronic shells (charges as shown) with 8, 8, and 92 jse with each shell being in compliance with JM for a spherical shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen (1984). Phys. Rev. Lett. 52, 2141.

    Article  CAS  Google Scholar 

  2. S. J. Bjjzfrnholm, O. Borggreen, K. Echt, J. Hansen, J. Pedersen, and H. D. Rasmussen (1991). Z. Phys. D 19, 47.

    Article  Google Scholar 

  3. K. Clemenger (1985). Phys. Rev. B 32, 1359.

    Article  CAS  Google Scholar 

  4. W. A. de Heer (1993). Rev. Mod. Phys. 65, 611, and references cited therein.

  5. M. Brack (1993). Rev. Mod. Phys. 65, 677, and references cited therein.

  6. L. T. Katakuse, Y. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai, and H. Matsuda (1985). Int. J. Mass Spectrom. Ion. Process. 67, 229.

    Article  CAS  Google Scholar 

  7. L. T. Katakuse, Y. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai, and H. Matsuda (1986). Int. J. Mass Spectrom. Ion. Process. 74, 33.

    Article  CAS  Google Scholar 

  8. P. K. Liao, B. Sarkar, H. W. Chang, J. C. Wang, and C. W. Liu (2009). Inorg. Chem. 48, 4089.

    Article  CAS  Google Scholar 

  9. C. W. Liu, H. W. Chang, C. S. Fang, B. Sarkar, and J. C. Wang (2010). Chem. Commun. 46, 4571.

    Article  CAS  Google Scholar 

  10. T. S. Lobana, J.-C. Wang, and C. W. Liu (2007). Coord. Chem. Rev. 251, 91.

    Article  CAS  Google Scholar 

  11. C. W. Liu, M. D. Irwin, A. A. Mohamed, and J. P. Fackler Jr. (2004). Inorg. Chim. Acta 357, 3950.

    Article  CAS  Google Scholar 

  12. C. E. Briant, B. R. C. Theobald, J. W. White, L. K. Bell, D. M. P. Mingos, and A. J. Welch (1981). J. Chem. Soc. Chem. Commun. 1981, 201.

    Article  Google Scholar 

  13. B. K. Teo and H. Zhang (2000). J. Organomet. Chem. 614–615, 66.

    Article  Google Scholar 

  14. A. Desireddy, B. C. Conn, J. Guo, B. Yoon, R. N. Barnett, B. N. Monahan, K. Kirschbaum, W. P. Griffith, R. L. Whetten, U. Landmann, and T. P. Bigioni (2013). Nature 501, 399.

    Article  CAS  Google Scholar 

  15. H. Yang, Y. Wang, H. Huang, L. Gell, L. Lehtovaara, S. Malola, H. Hakkinen, and N. Zheng (2013). Nature Commun. 4, 3422.

    Google Scholar 

  16. B. K. Teo, X. Shi, and H. Zhang (1992). J. Am. Chem. Soc. 114, 2743.

    Article  CAS  Google Scholar 

  17. P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, and R. D. Kornberg (2007). Science 318, 430.

    Article  CAS  Google Scholar 

  18. A. J. Edwards, R. S. Dhayal, P.-K. Liao, J.-H. Liao, M.-H. Chiang, R. O. Piltz, S. Kahlal, J.-Y. Saillard, and C. W. Liu (2014). Angew. Chem. Int. Ed. 53, 7214.

    Article  CAS  Google Scholar 

  19. J.-H. Liao, R. S. Dhayal, X. Wang, S. Kahlal, J.-Y. Saillard, and C. W. Liu (2014). Inorg. Chem. 53, 11140.

    Article  CAS  Google Scholar 

  20. R. S. Dhayal, J.-H. Liao, Y.-R. Lin, P.-K. Liao, S. Kahlal, J.-Y. Saillard, and C. W. Liu (2013). J. Am. Chem. Soc. 135, 4704.

    Article  CAS  Google Scholar 

  21. R. S. Dhayal, J.-H. Liao, S. Kahlal, X. Wang, Y.-C. Liu, M.-H. Chiang, W. E. van Zyl, J.-Y. Saillard, and C. W. Liu (2015). Chem. Eur. J. 21, 8369.

    Article  CAS  Google Scholar 

  22. S. Stegmaier and T. F. Fassler (2011). J. Am. Chem. Soc. 133, 19758.

    Article  CAS  Google Scholar 

  23. M. Rauhalahti and A. Munoz-Castro (2015). RSC Adv. 5, 18782.

    Article  CAS  Google Scholar 

  24. M. J. Moses, J. C. Fettinger, and B. W. Eichhorn (2003). Science 300, 778.

    Article  CAS  Google Scholar 

  25. B. K. Teo and H. Zhang (1995). Coord. Chem. Rev. 143, 611, and references cited therein.

  26. B. K. Teo and H. Zhang (1991). Proc. Natl. Acad. Sci. USA 88, 5067, and references cited therein.

  27. B. K. Teo, H. Dang, C. F. Campana, and H. Zhang (1998). Polyhedron 17, 617.

    Article  CAS  Google Scholar 

  28. B. K. Teo, H. Zhang, and X. Shi (1990). J. Am. Chem. Soc. 112, 8552.

    Article  CAS  Google Scholar 

  29. B. K. Teo, M. C. Hong, H. Zhang, and D. B. Huang (1987). Angew. Chem. Int. Ed. 99, 943.

    Article  CAS  Google Scholar 

  30. B. K. Teo and H. Zhang (2001). J. Cluster Sci. 12, 349.

    Article  CAS  Google Scholar 

  31. B. K. Teo, H. Zhang, and X. Shi (1994). Inorg. Chem. 33, 4086.

    Article  CAS  Google Scholar 

  32. E. N. Esenturk, J. Fettinger, and B. Eichhorn (2006). J. Am. Chem. Soc. 128, 9178.

    Article  CAS  Google Scholar 

  33. R. S. Dhayal, J.-H. Liao, Y.-C. Liu, M.-H. Chiang, S. Kahlal, J.-Y. Saillard, and C. W. Liu (2015). Angew. Chem. Int. Ed. 54, 3702.

    Article  CAS  Google Scholar 

  34. B. K. Teo, H. Zhang, Y. Kean, H. Dang, and X. Shi (1993). J. Chem. Phys. 99, 2929.

    Article  CAS  Google Scholar 

  35. S. C. Sevov, in J. H. Westbrook and R. L. Fleischer (eds.), Chapter 6 in “Intermetallic Compounds, Principles and Practice,” (Wiley, Chichester, 2002).

  36. S. Scharfe, F. Kraus, S. Stegmaier, A. Schier, and T. F. Fassler (2011). Angew. Chem. Int. Ed. 50, 3630.

    Article  CAS  Google Scholar 

  37. T. F. Fassler and S. D. Hoffmann (2004). Angew. Chem. Int. Ed. 43, 6242.

    Article  CAS  Google Scholar 

  38. E. N. Esenturk, J. Fettinger, Y.-F. Lam, and B. Eichhorn (2004). Angew. Chem. Int. Ed. 43, 2132.

    Article  CAS  Google Scholar 

  39. Z. Luo and A. W. Castleman Jr. (2014). Acc. Chem. Res.. doi:10.1021/ar5001583.

    Google Scholar 

  40. A. W. Castleman Jr. (2011). J. Phys. Chem. Lett. 2, 1062.

    Article  CAS  Google Scholar 

  41. A. W. Castleman Jr and S. N. Khanna (2009). J. Phys. Chem. C 113, 2664.

    Article  CAS  Google Scholar 

  42. D. E. Bergeron, P. J. Roach, A. W. Castleman Jr, N. O. Jones, and S. N. Khanna (2005). Science 307, 231.

    Article  CAS  Google Scholar 

  43. D. E. Bergeron, A. W. Castleman Jr, T. Morisato, and S. N. Khanna (2004). Science 304, 84.

    Article  CAS  Google Scholar 

  44. S. N. Khanna and P. Jena (1995). Phys. Rev. B 51, 13705.

    Article  CAS  Google Scholar 

  45. S. N. Khanna and P. Jena (1992). Phys. Rev. Lett. 69, 1664.

    Article  CAS  Google Scholar 

  46. C.-C. Wu, B.-H. Lee, P.-K. Liao, C.-S. Fang, and C. W. Liu (2012). J. Chin. Chem. Soc. 59, 480.

    Article  CAS  Google Scholar 

  47. G. F. Manbeck, A. J. Lipman, R. A. Stockland Jr, A. L. Freidl, A. F. Hasler, J. J. Stone, and I. A. Guzei (2005). J. Org. Chem. 70, 244.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from NNSFC (Grant Nos. 21071117, 21471125) and iChEM, Xiamen University, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boon K. Teo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, B.K., Yang, SY. Jelliumatic Shell Model. J Clust Sci 26, 1923–1941 (2015). https://doi.org/10.1007/s10876-015-0921-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0921-7

Keywords

Navigation