Skip to main content
Log in

Electronic and Magnetic Properties of Linear and Dimerized Titanium Nanochains Under Compressive and Tensile Strain

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The magnetic and electronic properties of both linear and dimerized nanochains of titanium at different atomic distances are calculated within density functional theory with the generalized gradient approximation. Titanium which is a nonmagnetic in its bulk form is shown to become magnetic in its nanochain structure. Also, a close relationship is found between magnetic state and geometry of chain structure and the dependence of electronic properties on the atomic structures of chains is revealed. It is found that, for dimerized nanochains from equilibrium constant, compressive strain leads to a reduction in magnetism. Moreover, characteristics of the systems near the Fermi level are investigated and the charge densities of both nanostructures are studied in the ferromagnetic order. The results show that metallic bonding is mainly responsible for the linear structure; however, for the dimerized structure, the bonding is more directional, i.e. has a more covalent character. With increasing tension along the axis of the nanostructures, a change in the types of bonding is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Zhang and H. J. Dai (2000). Appl. Phys. Lett. 77, 3015.

    Article  CAS  Google Scholar 

  2. K. Tsukagoshi, B. W. Alphenaar, and H. Ago (1999). Nature 401, 572.

    Article  CAS  Google Scholar 

  3. P. Gambardella, M. Blanc, L. Bürgi, K. Kuhnke, and K. Kern (2000). Surf. Sci. 93, 449.

    Google Scholar 

  4. V. Repain, J. M. Berroir, S. Rousset, and J. Lecoeur (2000). Surf. Sci. 447, 152.

    Article  Google Scholar 

  5. V. Rodrigues, J. Bettini, P. C. Silva, and D. Ugarte (2003). Phys. Rev. Lett. 91, 096801.

    Article  Google Scholar 

  6. P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli, W. Eberhardt, K. Kern, and C. Carbone (2002). Nature 416, 301.

    Article  CAS  Google Scholar 

  7. L. Krusin-Elbaum, D. M. Newns, H. Zeng, V. Derycke, J. Sun, and R. Sandstorm (2004). Nature 431, 672.

    Article  CAS  Google Scholar 

  8. P. Gambardella, M. Blanc, H. Brun, K. Kuhnke, and K. Kern (2000). Phys. Rev. B 61, 2254.

    Article  CAS  Google Scholar 

  9. E. Holmström, L. Toikka, A. V. Krasheninnikov, and K. Nordlund (2010). Phys. Rev. B 82, 045420.

    Article  Google Scholar 

  10. A. RodriguezPrieto and D. R. Bowler (2010). Phys. Rev. B 82, 041414.

    Article  Google Scholar 

  11. Q. Pang, Y. Zhang, J. M. Zhang, V. Ji, and K. W. Xue (2011). J. Mat Chem. Phys. 130, 140.

    Article  CAS  Google Scholar 

  12. K. Yamaura, M. Aria, A. Sato, A. B. Karki, D. P. Young, R. Movshovich, S. Okamoto, D. Mandrus, and E. Takayama-Muromachi (2007). Phys. Rev. Lett. 99, 196601.

    Article  CAS  Google Scholar 

  13. A. Fathalian, R. Moradian, and J. Jalilian (2013). Solid State Commun. 160, 17.

    Article  CAS  Google Scholar 

  14. S. Dag, S. Tongay, T. Yildrim, E. Durgun, R. T. Senger, C. Y. Fong, and S. Ciraci (2005). Phys. Rev. B 72, 155444.

    Article  Google Scholar 

  15. Y. Mokrousov, G. Bihlmayer, S. Heinze, and S. Blügel (2006). Phys. Rev. Lett. 96, 147201.

    Article  CAS  Google Scholar 

  16. A. Delin, E. Tosatti, and J. Phys (2004). Condens. Matter. 16, 8061.

    Article  CAS  Google Scholar 

  17. J. C. Tung and G. Y. Guo (2010). Phys. Rev. B 81, 094422.

    Article  Google Scholar 

  18. J. C. Tung and G. Y. Guo (2007). Phys. Rev. B 76, 094413.

    Article  Google Scholar 

  19. C. Ataca, S. Cahangirov, E. Durgun, Y. R. Jang, and S. Ciraci (2008). Phys. Rev. B 77, 214413.

    Article  Google Scholar 

  20. A. Bala and T. Nautiyal (2008). J. Magn. Magn. Mater. 320, 2201.

    Article  CAS  Google Scholar 

  21. A. Bala, T. Nautiyal, and K. S. Kim (2006). Phys. Rev. B 74, 174429.

    Article  Google Scholar 

  22. H. Hashemi, W. Hergert, and V. S. Stepanyuk (2010). J. Magn. Magn. Mater. 322, 1296.

    Article  CAS  Google Scholar 

  23. A. Delin and E. Tosatti (2003). Phys. Rev. B 68, 144434.

    Article  Google Scholar 

  24. Z. Zhu, J. Gu, Y. Jia, and X. Hu (2010). Acta. Metall. Sin. 23, 191.

    CAS  Google Scholar 

  25. M. Zenely, M. Sob, and J. Hafner (2009). Phys. Rev. B 79, 134421.

    Article  Google Scholar 

  26. M. Wienert and A. J. Freeman (1983). J. Magn. Magn. Mater. 38, 23.

    Article  Google Scholar 

  27. A. Nakamura, K. Matsunaga, T. Yamamoto, and Y. Ikuhara (2005). App. Surf. Sci. 241, 38.

    Article  CAS  Google Scholar 

  28. G. Rubio, N. Agrait, and S. Vieira (1996). Phy. Rev. Lett. 76, 2302.

    Article  CAS  Google Scholar 

  29. Y. Yin, J. Jiang, and Q. Cai (2002). Appl. Surf. Sci. 199, 319.

    Article  CAS  Google Scholar 

  30. I. Mukhopadhyay and W. Freyland (2003). Langmuir. Am. Chem. Soc. 19, 1952.

    Google Scholar 

  31. P. Zhang and T. K. Sham (2003). Phys. Rev. Lett. 90, 245502.

    Article  Google Scholar 

  32. G. Faraci, A. R. Pennisi, A. Balerna, H. Pattyn, G. E. J. Koops, and G. Zhang (2001). Phys. Rev. Lett. 86, 3566.

    Article  CAS  Google Scholar 

  33. J. Du, H. Wang, and G. Jiang (2007). J. Mol. Struct. Theochem. 817, 47.

    Article  CAS  Google Scholar 

  34. A. Pendelton, S. Kundu, and H. Liang (2009). J. Nanopart. Res. 11, 505.

    Article  Google Scholar 

  35. L. Zhang, P. Zhang, and Y. Fang (2007). J. Colloid Interface Sci. 311, 502.

    Article  CAS  Google Scholar 

  36. B. J. Inkson, G. Dehm, and T. Wagner (2004). J. Microsc. 214, 252.

    Article  CAS  Google Scholar 

  37. Y. J. Chen, J. H. Hsu, and H. N. Lin (2005). Nanotechnology 16, 1112.

    Article  CAS  Google Scholar 

  38. T. Miyazaki, K. Kopayashi, T. Horiuchi, H. Yamada, and K. Matsushige (2001). Jpn. J. Appl. Phys. 40, 4365.

    Article  CAS  Google Scholar 

  39. Y. Zhang, N. W. Franklin, R. J. Chen, and H. Dai (2000). Chem. Phys. Lett. 331, 35.

    Article  CAS  Google Scholar 

  40. B. Wang, S. Yin, G. Wang, and J. Zhao (2001). J. Phys. Condens. Matter 13, L403.

    Article  CAS  Google Scholar 

  41. A. Y. Li, R. Q. Li, Z. Z. Zhu, and Y. H. Wen (2005). Physics E 30, 138.

    Article  CAS  Google Scholar 

  42. Z. L. Zhu, J. H. Gu, and Y. Jia (2007). Phys. B Condens. Matter. 387, 190.

    Article  CAS  Google Scholar 

  43. A. Bala, T. Nautiyal, and S. Auluk (2009). J. Magn. Magn. Mater. 321, 1856.

    Article  CAS  Google Scholar 

  44. H. R. Hajiyani and M. Jafari (2012). J. Magn. Magn. Mater. 324, 418.

    Article  CAS  Google Scholar 

  45. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz WIEN2K, An augmented plane wave plus local orbitals pogram for calculating crystal properties (Vienna University of Technology, Vienna, 2001).

    Google Scholar 

  46. J. P. Perdew and Y. Wang (1992). Phys. Rev. B 45, 13244.

    Article  Google Scholar 

  47. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais (1992). Phys. Rev. B 46, 6671.

    Article  CAS  Google Scholar 

  48. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  49. J. P. Perdew, K. Burke, and M. Ernzerhof (1997). Phys. Rev. Lett. 78, 1396.

    Article  CAS  Google Scholar 

  50. J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha (1999). Phys. Rev. Lett. 82, 2544.

    Article  CAS  Google Scholar 

  51. M. Jafari, H. Hajiyani, Z. Sohrabikia, and H. Galavani (2013). Comput. Mater. Sci. 77, 224.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabikia, Z., Jafari, M. Electronic and Magnetic Properties of Linear and Dimerized Titanium Nanochains Under Compressive and Tensile Strain. J Clust Sci 27, 183–191 (2016). https://doi.org/10.1007/s10876-015-0919-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0919-1

Keywords

Navigation