Skip to main content
Log in

The Role of Y2O3 and MgO Additives on the Photoluminescence Properties of Si3N4 Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The current research addressed synthesizing and studying photoluminescence studies of β-Si3N4 nanoparticles. The effect of MgO and Y2O3 as the typical additives on photoluminescence behaviour was evaluated. The β-Si3N4 with MgO and Y2O3 additive specimens were fabricated by a solid state technique (ball-milled method). The as-prepared products were characterized by X-ray diffraction technique, transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman analysis. The results showed that after ball-milled process, hexagonal β-Si3N4 with MgO or Y2O3 as the additives with the size distribution of 45–50 nm was obtained. The optical properties of the as-synthesized product were also investigated by photoluminescence and diffuse reflection spectroscopy. The obtained results confirmed that employing MgO as an additive, in comparison to the Y2O3, could enhance emission properties in the synthesized silicon nitride nanoparticles. The obtained results also showed that MgO–Si3N4 pair acted as FRET system to enhance the emission intensity of β-Si3N4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Munakata, K. Matsuo, K. Furuya, Y. Akimune, J. Ye, and I. Ishikawa (1999). Appl. Phys. Lett. 74, 3498–3500.

    Article  CAS  Google Scholar 

  2. L. Zhang, H. Jin, W. Yang, Z. Xie, H. Miao, and L. An (2005). Appl. Phys. Lett. 86, 061908.

    Article  Google Scholar 

  3. W. Han, S. Fan, Q. Li, B. Qu, and D. Yu (1997). Appl. Phys. Lett. 71, 2271–2273.

    Article  CAS  Google Scholar 

  4. A. R. Zanatta and L. A. O. Nunes (1998). Appl. Phys. Lett. 72, 3127–3129.

    Article  CAS  Google Scholar 

  5. X. Q. Piao, T. Horikawa, H. Hanzawa, and K. Machida (2006). Appl. Phys. Lett. 88, 908.

    Article  Google Scholar 

  6. W. Yang, H. Wang, S. Liu, Z. Xie, and L. An (2007). J. Phys. Chem. B 111, 4156–4160.

    Article  CAS  Google Scholar 

  7. Y. Q. Li, N. Hirosaki, R.-J. Xie, T. Takeda, and M. Mitomo (2010). J. Lumin 130, 1147–1153.

    Article  CAS  Google Scholar 

  8. W. Yang, Z. Xie, J. Li, H. Miao, L. Zhang, H. Ji, and L. An (2005). J. Am. Ceram. Soc. 88, 1647–1650.

    Article  CAS  Google Scholar 

  9. L. W. Lin and Y. H. He (2012). CrystEngComm 14, 3250–3256.

    Article  CAS  Google Scholar 

  10. A. Giachello, P. C. Martinengo, G. Tommasini, and P. Popper (1979). J. Mater. Sci. 14, 2825–2830.

    Article  CAS  Google Scholar 

  11. J. Cai, Y. L. Zhang, Y. Li, L. Y. Du, Z. Y. Lyu, Q. Wu, X. Z. Wang, and Z. Hu (2014). CrystEngComm 16, 9555–9559.

    Article  CAS  Google Scholar 

  12. Z. Guo, G. Blugan, T. Graule, M. Reece, and J. Kuebler (2007). J. Eur. Ceram. Soc. 27, 2153–2161.

    Article  CAS  Google Scholar 

  13. L. Wanga, S. Roy, W. Sigmund, and F. Aldinger (1999). J. Eur. Ceram. Soc. 19, 61–65.

    Article  Google Scholar 

  14. C. Santos, S. Ribeiro, K. Strecker, and C. R. M. da Silva (2003). J. Mater. Proc. Technol 142, 697–701.

    Article  CAS  Google Scholar 

  15. D. Tuyena, Y. Park, H. D. Kim, and B. Lee (2009). Ceram. Int. 35, 2305–2310.

    Article  Google Scholar 

  16. Y. Zhaoa, Y. Zhang, H. Gong, H. Sun, and Q. Li (2014). Ceram. Int. 40, 13537–13541.

    Article  Google Scholar 

  17. H. R. Philipp (1973). J. Electrochem. Soc. 120, 295–300.

    Article  CAS  Google Scholar 

  18. P. A. Pundur, J. G. Shavalgin, and V. A. Gritsenko (1986). Phys. Status Solidi A 94, K107–K112.

    Article  CAS  Google Scholar 

  19. G. Petzow and R. Sersale (1987). Pure Appl. Chem. 59, 1673–1680.

    Article  CAS  Google Scholar 

  20. N. Wada, S. A. Solin, J. Wong, and S. Prochazka (1981). J. Non-Cryst. solids 43, 7–15.

    Article  CAS  Google Scholar 

  21. D. Song, E.-C. Cho, G. Conibeer, C. Flynn, and Y. Huang (2008). Sol. Eng. Mater. Sol. Cells 92, 474–481.

    Article  CAS  Google Scholar 

  22. R. G. Schlecht and H. K. Bockelmann (1973). Phys. Rev. Lett. 31, 930–932.

    Article  CAS  Google Scholar 

  23. A. Ubaldini and M. M. Carnasciali (2008). J. Alloy Compds. 454, 374–378.

    Article  CAS  Google Scholar 

  24. Y. Q. Li, N. Hirosaki, R.-J. Xie, T. Taked, and M. Mitomo (2010). J. Lumin. 130, 1147–1153.

    Article  CAS  Google Scholar 

  25. J. Robertson and M. J. Powell (1984). Appl. Phys. Lett 44, 415–417.

    Article  CAS  Google Scholar 

  26. L. G. Zhang, H. Jin, W. Y. Yang, Z. P. Xie, H. Z. Miao, and L. N. An (1911). Appl. Phys. Lett. 86, (2005), 061908–061916.

    Google Scholar 

  27. S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand (1995). J. Appl. Phys. 77, 6534–6541.

    Article  CAS  Google Scholar 

  28. F. M. Gao, Y. S. Wang, L. G. Zhang, W. Y. Yang, and L. N. An (2010). J. Am. Ceram. Soc. 93, 1364–1367.

    CAS  Google Scholar 

  29. X. Fu, N. Zhu, and Z. Peng (2012). Solid State Sci. 14, 1267–1272.

    Article  CAS  Google Scholar 

  30. Y. Z. Liu, Y. Q. Zhou, W. Q. Shi, L. L. Zhao, B. Y. Sun, and T. C. Ye (2004). Mater. Lett. 58, 2397–2400.

    Article  CAS  Google Scholar 

  31. M. Ahmad, J. Zhao, C. F. Pan, and J. Zhu (2009). J. Cryst. Growth 311, 4486–4490.

    Article  CAS  Google Scholar 

  32. Y. X. Pan, M. M. Wu, and Q. Su (2004). J. Phys. Chem. Solids 65, 845–850.

    Article  CAS  Google Scholar 

  33. H. Yamamoto and S. Okamoto (2000). Displays 21, 93–98.

    Article  CAS  Google Scholar 

  34. S. Okamoto and H. Yamamoto (1999). J. Appl. Phys. 82, 5594–5597.

    Article  Google Scholar 

  35. C. Jiang, L. Fang, M. R. Shen, F. G. Zheng, and X. L. Wu (2009). Appl. Phys. Lett. 94, 071110–071113.

    Article  Google Scholar 

  36. V. D. Meer, B. W. G. Coker, and S. Y. S. Chen Resonance energy transfer: theory and data (VCH, New York, 1994).

    Google Scholar 

  37. P. R. Selvin (2000). Nat. Struct. Biol. 7, 730–735.

    Article  CAS  Google Scholar 

  38. G. J. Zhao and K. L. Han (2012). Acc. Chem. Res. 45, 404.

    Article  CAS  Google Scholar 

  39. C. L. Cheng, M. Z. Zhang, and G. J. Zhao (2014). RSC Adv. 4, 6513.

    Article  CAS  Google Scholar 

  40. G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940–8945.

    Article  CAS  Google Scholar 

  41. J. P. Wang, J. S. Chen, and G. J. Zhao (2014). J. Colloid Interface Sci. 423, 1–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rezazadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezazadeh, M., Emadi, R., Saatchi, A. et al. The Role of Y2O3 and MgO Additives on the Photoluminescence Properties of Si3N4 Nanoparticles. J Clust Sci 27, 73–84 (2016). https://doi.org/10.1007/s10876-015-0909-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0909-3

Keywords

Navigation